在含有電感L、電容C和電阻R的串聯(lián)諧振電路中,需要研究在不同頻率正弦激勵下響應(yīng)隨頻率變化的情況,即頻率特性。Multisim 1O仿真軟件可以實(shí)現(xiàn)原理圖的捕獲、電路分析、電路仿真、仿真儀器測試等方面的應(yīng)用,其數(shù)量眾多的元件數(shù)據(jù)庫、標(biāo)準(zhǔn)化仿真儀器、直觀界面、簡潔明了的操作、強(qiáng)大的分析測試、可信的測試結(jié)果都為眾多的電子工程設(shè)計人員提供了一種可靠的分析方法,同時也縮短了產(chǎn)品的研發(fā)時間。
1 RLC串聯(lián)的頻率響應(yīng)
RLC二階電路的頻率響應(yīng)電路如圖1所示。設(shè)輸出電壓取自電阻,則轉(zhuǎn)移電壓比為:
由式(2)可知,當(dāng)1-ω2LC=O時,|Au|達(dá)到最大值;當(dāng)ω等于某一特定值ω0時,即:
|Au|達(dá)到最大值為1,在ω=ω0時,輸出電壓等于輸入電壓,ω0稱為帶通電路的中心頻率。當(dāng)|Au|下降為其最大值的70.7%時,兩個頻率分別為上半功率頻率和下半功率頻率,高于中心頻率記為ω2,低于中心頻率記為ω1,如圖2所示,頻率差定義為通頻帶BW,即:
衡量幅頻特性是否陡峭,就看中心頻率對通帶的比值如何,這一比值稱為品質(zhì)因數(shù),記為Q,即:
如圖3所示,給出不同R值的相頻特性曲線。串聯(lián)回路中的電阻R值越大,同曲線越平坦,通頻帶越寬,反之,通頻帶越窄。
RLC串聯(lián)電路的輸入阻抗Z為:
式(6)中的實(shí)部是一常數(shù),而虛部則為頻率的函數(shù)。在某一頻率時(ω0),電抗為零,阻抗的模為最小值,且為純電阻。在一定的輸入電壓作用下,電路中的電流最大,且電流與輸入電壓同相。
2 Multisim的特點(diǎn)
Multisim能幫助專業(yè)人員分析電路,采用直觀、易用的軟件平臺將原理圖輸入,并將工業(yè)標(biāo)準(zhǔn)的Spice仿真集成在同一環(huán)境中,即可方便地仿真和分析電路。同時Multisim為教育工作者的教學(xué)和專業(yè)設(shè)計人員分別提供相應(yīng)的軟件版本。
工程師、研究人員使用Multisim進(jìn)行原理圖輸入、Spice仿真和電路設(shè)計,無需Spice專業(yè)知識,即可通過仿真來減少設(shè)計流程前期的原型反復(fù)。Multisim可用于識別錯誤、驗(yàn)證設(shè)計,以及更快地恢復(fù)原型。此外,Multisim原理圖可便捷地轉(zhuǎn)換到NI Ultiboard中完成PCB設(shè)計。
3 Muitisim的分析方法
Multisim提供了多種分析方法,它利用仿真產(chǎn)生的數(shù)據(jù)執(zhí)行分析,分析范圍很廣,從基本的到極端的不常見的都有,并可以將一個分析作為另一個分析的一部分自動執(zhí)行。
對于每種分析方法,用戶只需告訴Multisim哪些分析要做,系統(tǒng)就會自動地進(jìn)行分析,并把結(jié)果以圖形的方式或數(shù)據(jù)列表的方式展現(xiàn)出來。用戶也可以通過輸入Spice命令來創(chuàng)建自定義分析。
交流分析常用于電路的頻率響應(yīng)。在交流分析中,對于所有的非線性元件的小信號模型,首先通過直流工作點(diǎn)分析計算得到線性之后創(chuàng)建一個復(fù)矩陣,直流源都設(shè)置為零值。交流源、電容和電感通過自身的交流模型呈現(xiàn);非線性元件通過線性交流小信號模型呈現(xiàn),它源自直流工作點(diǎn)的運(yùn)算分析結(jié)果。所有輸入源都被認(rèn)為是正弦信號,源的頻率被忽略。如果函數(shù)發(fā)生器設(shè)置為正弦波以外的波形,它將自動切換到內(nèi)置的正弦信號,再進(jìn)行分析計算函數(shù)和頻率響應(yīng)。
4 RLC電路的頻率響應(yīng)仿真
4.1 創(chuàng)建仿真電路
在Multisim 10仿真軟件的工作界面上建立如圖4所示的仿真電路,并設(shè)置電感L1=25 mH,C1=10 nF,R1=10 Ω。雙擊"XFG1”函數(shù)發(fā)生器,調(diào)整“Wavefrms”為正弦波,“Frequency”為1 kHz,“Amplitude”為1 V。
4.2 打開仿真開關(guān)
雙擊“XSC1”虛擬示波器和“XMM1”電壓表,將電壓表調(diào)整為交流檔,并拖放到合適的位置,再調(diào)整“XFG1”函數(shù)發(fā)生器中的“Frequ-ency”正弦波頻率,分別觀察示波器的輸出電壓波形和電壓表的電壓,使示波器的輸出電壓最大或電壓表輸出最高;然后記錄下“XFG1”函數(shù)發(fā)生器中的“Frequency”正弦波頻率,如圖5所示。
4.3 諧振狀態(tài)下的特性
串聯(lián)回路總電抗,此時,諧振回路阻抗|Zo|為最小值,整個回路相當(dāng)于一個純電阻電路,激勵電源的電壓與回路的響應(yīng)電壓同相位,如圖6所示。
諧振時,電感ωoL與容抗相等,電感上的電壓UL與電容上的電壓Uc大小相等,相位差180°。
在激勵電源電壓(有效值)不變的情況下,諧振回路中的電流I=Ui/R為最大值。
4.4 諧振電路的頻率特性
串聯(lián)回路響應(yīng)電壓與激勵電源角頻率之間的關(guān)系稱為幅頻特性。在Multisim 10仿真軟件中可使用波特圖儀或交流分析方法進(jìn)行觀察。
波特圖儀法:雙擊“XBP1”波特圖儀,幅頻特性如圖7所示,當(dāng)fo約為lO kHz時輸出電壓為最大值。
交流分析法:選擇“Simulate”菜單中的“Analysis”進(jìn)入“AC Analysis”的交流分析,分析前進(jìn)行相關(guān)設(shè)置。在“Frequency Par-ameters”選項(xiàng)卡中“Start frequency”設(shè)置為1 kHz,“Stop frequency”設(shè)置為100 kHz,如圖8所示。在“Output”選項(xiàng)卡中,選擇“V[5]”為輸出點(diǎn),如圖9所示。單擊“Simulate”開始仿真,交流仿真結(jié)果如圖10所示。
4.5 品質(zhì)因數(shù)Q
RLC串聯(lián)回路中的L和C保持不變,改變R的大小,可以得出不同Q值時的幅頻特性曲線。取R=1 Ω,R=10 Ω和R=100 Ω三種阻值分別觀察品質(zhì)因數(shù)Q。
雙擊電阻R1,在彈出的對話框中修改電阻的阻值為1 Ω,雙擊“XBP1”波特圖儀,打開仿真開關(guān),幅頻特性如圖11所示。
關(guān)閉仿真開關(guān),修改R1電阻阻值為10 Ω,雙擊“XBP1”波特圖儀,打開仿真開關(guān),幅頻特性如圖7所示。關(guān)閉仿真開關(guān),將R1電阻阻值為100 Ω,雙擊“XBP1”波特圖儀,再打開仿真開關(guān),幅頻特性如圖12所示。
顯然,Q值越高,曲線越尖銳,電路的選擇性越好,通頻帶也越窄。
5 結(jié)論
從Multisim 10仿真軟件進(jìn)行RLC串聯(lián)諧振電路實(shí)驗(yàn)的結(jié)果來看,RLC串聯(lián)諧振電路在發(fā)生諧振時,電感上的電壓UL與電容上的電壓Uc大小相等,相位相反。這時電路處于純電阻狀態(tài),且阻抗最小,激勵電源的電壓與回路的響應(yīng)電壓同相位。諧振頻率fo與回路中的電感L和電容C有關(guān),與電阻R和激勵電源無關(guān)。品質(zhì)因數(shù)Q值反映了曲線的尖銳程度,電阻R的阻值直接影響Q值。
實(shí)驗(yàn)過程中,使用者可方便地選用元器件。通過虛擬儀器,免去了昂貴的儀表費(fèi)用,并可以毫無風(fēng)險地接觸所有儀器,仿真軟件多種分析方法提供了可靠的分析結(jié)果,這是現(xiàn)實(shí)中很難實(shí)現(xiàn)的。