| 基于改进VGG16的猴子图像分类方法 | |
| 所屬分類:技术论文 | |
| 上傳者:muyx | |
| 文檔大?。?span>2108 K | |
| 標(biāo)簽: 迁移学习 VGG16 卷积神经网络 | |
| 所需積分:0分積分不夠怎么辦? | |
| 文檔介紹:为提高对细粒度图像分类的准确性和分类速度,提出基于改进VGG16和迁移学习的图像分类方法。首先从kaggle平台中获取十种不同猴子数据集,并对数据集进行标准化处理,包含图片去椒盐噪声、将数据集转换为TensorFlow中提供的统一TFRecord数据格式。然后迁移学习改进的VGG16卷积神经网络,模型的优化包括利用Swish作为激活函数、将softmax loss与center loss相结合作为损失函数以实现更好的聚类效果、采用性能完善的Adam优化器。用训练集训练模型以确定微调参数信息,再用测试集检验模型准确性。结果表明,该方法对猴子图像分类的准确度可达到98.875%,分类速度也得到了显著提升。与其他传统卷积神经网络模型相比,该方法具有更高的准确性和适用性。 | |
| 現(xiàn)在下載 | |
| VIP會(huì)員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。 | |
Copyright ? 2005-2024 華北計(jì)算機(jī)系統(tǒng)工程研究所版權(quán)所有 京ICP備10017138號(hào)-2