基于BERT的提示学习实现软件需求精确分类
所屬分類:技术论文
上傳者:zhoubin333
文檔大?。?span>644 K
標簽: 软件需求 精确分类 双向编码器
所需積分:0分積分不夠怎么辦?
文檔介紹: 软件需求是用户对软件效用的直接回馈, 实现对软件需求工程精确分类可大幅降低维护成本并显著加快软件开发维护的流程。使用传统的基于机器学习分类方法(如逻辑回归、支持向量机以及K近邻算法),或简单地应用BERT(Bidirectional Encoder Representation from Transformers)模型都不能很好地利用软件需求PROMISE数据集样本,最终表现为通用性差或分类效率低。为了增强BERT模型对自然语言文本的语义理解能力,应用提示学习的思想,将K分类选择问题转化为二分判断问题。实验结果表明,无需对不均衡的数据集执行样本均衡策略,模型分类性能便远优于上述两种分类工作,获得最佳的预测结果。
現(xiàn)在下載
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。