| 基于CNN的智慧农场图像分类方法 | |
| 所屬分類:技术论文 | |
| 上傳者:zhoubin333 | |
| 文檔大?。?span>4508 K | |
| 標(biāo)簽: 深度学习 卷积神经网络 数据增强 | |
| 所需積分:0分積分不夠怎么辦? | |
| 文檔介紹:为解决新疆兵团农业现代化建设中有感知无决策的问题,提出一种基于注意力机制模块(SENet)与卷积神经网络混合模型迁移学习的图像分类方法(TL-DA-SE-CNN)。该方法选择4种不同的CNN模型进行权重采集,包括VGGNet、ResNet、InceptionNet和MobileNet。模型使用SENet分类器代替卷积神经网络的全连接层,提取图像的结构性高阶统计特征进行主题分类,并使用BP算法进行参数调整,分类准确度达98.20%。实验结果表明,将CNN与迁移学习、数据增强和SENet相结合的技术提高了牲畜图像分类的性能,是卷积神经网络在农场自动化分群中的有效应用。 | |
| 現(xiàn)在下載 | |
| VIP會員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。 | |
Copyright ? 2005-2024 華北計算機(jī)系統(tǒng)工程研究所版權(quán)所有 京ICP備10017138號-2