《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 测试测量 > 设计应用 > 基于改进的Faster R-CNN的古建筑地砖缺陷检测
基于改进的Faster R-CNN的古建筑地砖缺陷检测
2021年电子技术应用第1期
陈 利1,2,刘艳艳1,2
1.南开大学 光电子薄膜器件与技术天津市重点实验室,天津300350; 2.南开大学 薄膜光电子技术教育部工程研究中心,天津300350
摘要: 缺陷检测对于古建筑的保护和修缮具有重要的意义,传统的地砖缺陷检测通过目视检查,存在受人力影响大、耗时长等限制。基于深度学习的良好应用前景,建立故宫地砖缺陷的数据集,提出改进型Faster R-CNN的网络。首先,构建可变形卷积,通过网络学习并提取地砖中的缺陷特征;然后,将特征图输入区域生成网络中生成候选区域框,将生成的特征图和候选区域框进行池化操作;最后,输出缺陷检测结果。在故宫地砖图片数据集的测试下,改进后的模型平均准确率均值到达92.49%,与Faster R-CNN模型相比提高了2.99%,更适用于地砖缺陷检测。
中圖分類(lèi)號(hào): TN03;TP181
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.200555
中文引用格式: 陳利,劉艷艷. 基于改進(jìn)的Faster R-CNN的古建筑地磚缺陷檢測(cè)[J].電子技術(shù)應(yīng)用,2021,47(1):31-35.
英文引用格式: Chen Li,Liu Yanyan. Defects detection of floor tiles of ancient buildings based on Faster R-CNN[J]. Application of Electronic Technique,2021,47(1):31-35.
Defects detection of floor tiles of ancient buildings based on Faster R-CNN
Chen Li1,2,Liu Yanyan1,2
1.Key Laboratory for Photoelectronic Thin Film Devices and Technology of Tianjin,Nankai University,Tianjin 300350,China; 2.Engineering Research Center of Thin Film Optoelectronics Technology,Ministry of Education,Nankai University, Tianjin 300350,China
Abstract: Defect detection is of great significance for the protection and repair of ancient buildings. The traditional floor tile defect detection has been subject to visual inspection, which has limitations due to human influence and time-consuming. Based on the good application prospects of deep learning, this paper builds a data set of imperfections in the Forbidden City, and proposes an improved Faster R-CNN. Firstly, the deformable convolution was constructed, and the defect features in the floor tile were learned and extracted through the network. Then,the feature graph was input into region proposal network to generate the candidate region box, and the generated feature graph and candidate region box was pooled. Finally, the defect detection results were output. Under the test of the image data set of floor tiles of the Forbidden City, the mean accuracy of the improved model reached 92.49%, which was 2.99% higher than the Faster R-CNN model and more suitable for the floor tile defect detection.
Key words : defect detection;Faster R-CNN;deformable convolution

0 引言

    隨著科技高速發(fā)展,對(duì)文物的保護(hù)和修繕越來(lái)越得到重視。傳統(tǒng)對(duì)文物的缺陷檢測(cè)主要依靠人力進(jìn)行目視檢查,但容易受到天氣、時(shí)間等原因影響。地磚缺陷具有形狀不規(guī)則、背景噪聲系數(shù)大等特征,目前大多數(shù)缺陷檢測(cè)算法都是根據(jù)應(yīng)用場(chǎng)景不同進(jìn)行手工提取缺陷特征,直接或者通過(guò)機(jī)器學(xué)習(xí)算法進(jìn)行分類(lèi)[1]。這種有監(jiān)督機(jī)器學(xué)習(xí)存在一定局限性,受圖片中缺陷類(lèi)別數(shù)目、特征形狀等因素影響,人為提取特征需要具有很強(qiáng)的專(zhuān)業(yè)性,檢測(cè)結(jié)果不好,魯棒性差,所以不能很好地適用于對(duì)地磚缺陷檢測(cè)。

    隨著計(jì)算機(jī)視覺(jué)不斷發(fā)展,深度學(xué)習(xí)作為計(jì)算機(jī)視覺(jué)的分支,越來(lái)越受到人們重視,目標(biāo)檢測(cè)是深度學(xué)習(xí)的廣泛應(yīng)用之一。近些年來(lái),目標(biāo)檢測(cè)取得了很大突破。目標(biāo)檢測(cè)主要分為兩類(lèi):一類(lèi)是基于候選框的R-CNN(Region Convolutional Neural Network)系列算法,如R-CNN、Fast R-CNN(Fast Region Convolutional Neural Network)、Faster R-CNN(Faster Region Convolutional Neural Network)[2],它們是生成候選框后進(jìn)行分類(lèi)和位置回歸;另一類(lèi)是YOLO(You Only Look Once)[3]、SSD(Single Shot MultiBox Detector),從回歸角度出發(fā),直接在圖像中回歸出目標(biāo)邊框和位置,這類(lèi)算法僅使用一個(gè)卷積神經(jīng)網(wǎng)絡(luò)。第一類(lèi)方法準(zhǔn)確度高,速度慢;第二類(lèi)算法速度快,可以到達(dá)實(shí)時(shí)檢測(cè),但是準(zhǔn)確性低。

    目前基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法很多,應(yīng)用在目標(biāo)檢測(cè)的效果也很突出[4-6],但是現(xiàn)有算法在缺陷檢測(cè)中并不能很好地體現(xiàn)出來(lái)[7-9],尤其是在地磚缺陷檢測(cè)中,現(xiàn)有目標(biāo)檢測(cè)算法受限于地磚特征的多樣性以及紋理特性。為此,本文提出了一種基于改進(jìn)型Faster R-CNN網(wǎng)絡(luò)用于檢測(cè)地磚缺陷。對(duì)卷積核中每個(gè)采樣點(diǎn)位置都增加了一個(gè)偏移變量,通過(guò)這些變量,卷積核就可以在當(dāng)前位置附近隨意采樣,而不再局限于之前的規(guī)則格點(diǎn),形狀多變的感受野豐富了語(yǔ)義信息,從而提高檢測(cè)精度[3]。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://www.ihrv.cn/resource/share/2000003301




作者信息:

陳  利1,2,劉艷艷1,2

(1.南開(kāi)大學(xué) 光電子薄膜器件與技術(shù)天津市重點(diǎn)實(shí)驗(yàn)室,天津300350;

2.南開(kāi)大學(xué) 薄膜光電子技術(shù)教育部工程研究中心,天津300350)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容