基于熵率聚类的超像素机器视觉与缺陷检测算法
信息技术与网络安全
李 锋
(广东交通职业技术学院,广东 广州510650)
摘要: 在智能制造中,传统成像技术已经满足不了高精度工业需求。提出了结合熵率聚类的目标分割算法,并且基于超像素的邻边集,建立熵率和平衡项的目标函数,最后通过贪婪启发算法优化并求解该目标函数,得到最优的超像素集合。并设计了基于高斯函数衡量相邻像素的相似性实验,设定相关参数,进行工业制造实际流程检测。最终实验结果表明,所提算法有较好的检测识别效果,在轮廓及内部条纹识别上效果明显,整体识别效果良好,适用于工业制造领域。
中圖分類號(hào): TP393
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.19358/j.issn.2096-5133.2021.02.012
引用格式: 李鋒. 基于熵率聚類的超像素機(jī)器視覺與缺陷檢測算法[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(2):70-73.
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.19358/j.issn.2096-5133.2021.02.012
引用格式: 李鋒. 基于熵率聚類的超像素機(jī)器視覺與缺陷檢測算法[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(2):70-73.
Super pixel machine vision and defect detection algorithm based on entropy rate clustering
Li Feng
(Guangdong Communication Polytechnic,Guangzhou 510650,China)
Abstract: In intelligent manufacturing, traditional imaging technology can no longer meet the needs of high-precision industry. In this paper, a target segmentation algorithm combining entropy rate clustering was proposed, and the objective function of entropy rate and equilibrium term was established based on the adjacent edge set of hyper pixel. Finally, the optimal hyper pixel set was obtained by optimizing and solving the objective function through greedy heuristic algorithm. A similarity experiment based on Gaussian function was designed to measure the similarity of adjacent pixels, and the relevant parameters were set to test the actual process of industrial manufacturing. The final experimental result shows that the algorithm has a good detection and recognition effect, is obvious in contour and internal fringe recognition, and the overall result is good, which is applicable to the field of industrial manufacturing.
Key words : machine vision;entropy clustering;super pixel;greedy heuristic algorithm
0 引言
隨著智能制造工藝精度的提高,高精度和快速檢測成為目前亟待解決的問題。機(jī)器視覺與圖像識(shí)別作為非接觸式檢測方式,具有檢測速度快、精度高的特點(diǎn),能很好地解決智能制造流水線中的瓶頸,并逐步替代傳統(tǒng)人工檢測方法。
工業(yè)檢測對(duì)表面缺陷檢測要求更嚴(yán)格,傳統(tǒng)表面缺陷成像方法,包括線掃描、結(jié)構(gòu)光、面陣相機(jī)等已經(jīng)不能滿足精度要求,基于超像素檢測算法由此誕生。表面缺陷檢測問題包括圖像分類和圖像分割兩大部分,通過采集大量缺陷與合格產(chǎn)品圖像,對(duì)比分析圖像中缺陷特征,設(shè)計(jì)相應(yīng)缺陷檢測算法。
本文詳細(xì)內(nèi)容請(qǐng)下載:http://www.ihrv.cn/resource/share/2000003382
作者信息:
李 鋒
(廣東交通職業(yè)技術(shù)學(xué)院,廣東 廣州510650)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
