《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 人工智能 > 设计应用 > 基于边缘计算中极端姿态和表情的人脸识别
基于边缘计算中极端姿态和表情的人脸识别
2021年电子技术应用第6期
况朝青1,2,3,贺 超1,2,3,王均成1,2,3,邹建纹1,2,3
1.重庆邮电大学 通信与信息工程学院,重庆 400065;2.重庆高校市级光通信与网络重点实验室,重庆 400065; 3.泛在感知与互联重庆市重点实验室,重庆 400065
摘要: 随着信息技术的发展,人脸识别在支付、工作和安防系统中应用的越来越多。在边缘计算系统中,为了处理的速度,通常选择较小的神经网络进行人脸识别,这样会导致识别率低。并且在实际应用中大多都是对于图片质量较高的人脸可以很好地识别,但对于受光照影响较大、表情和姿态变化大的图片识别率不是很高。因此,选择SqueezeNet轻量级网络,该网络层数小,可以很好地运用于边缘计算系统中。采用了预处理的方法来对图片进行预处理,然后改进了SqueezeNet网络的损失函数以及加入了ResNet网络中的残差学习方法。最后通过对LFW和IJB-A数据集进行测试,该研究方法明显提高了识别率。
中圖分類號(hào): TN911.73;TP391.4
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.200968
中文引用格式: 況朝青,賀超,王均成,等. 基于邊緣計(jì)算中極端姿態(tài)和表情的人臉識(shí)別[J].電子技術(shù)應(yīng)用,2021,47(6):30-34.
英文引用格式: Kuang Chaoqing,He Chao,Wang Juncheng,et al. Face recognition with extreme posture and expression[J]. Application of Electronic Technique,2021,47(6):30-34.
Face recognition with extreme posture and expression
Kuang Chaoqing1,2,3,He Chao1,2,3,Wang Juncheng1,2,3,Zou Jianwen1,2,3
1.School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications, Chongqing 400065,China; 2.Optical Communications and Networks Key Laboratory of Chongqing,Chongqing 400065,China; 3.Ubiquitous Sensing and Networking Key Laboratory of Chongqing,Chongqing 400065,China
Abstract: With the development of information technology, face recognition is used more and more in payment, work and security system. In the edge computing system, in order to deal with the speed, we usually choose a smaller neural network for face recognition, which may cause the recognition rate is not very high. And in practical applications, most of them can recognize the face with high image quality, but the recognition rate is not very high for the face which is greatly affected by the light and has great changes in expression and posture. Therefore, this paper chooses the SqueezeNet lightweight network, which has a small number of layers and can be well used in edge computing system. The method of preprocessing is used to preprocess the image, and then the loss function of SqueezeNet network and the residual learning method of ResNet network are improved. Finally, through the test of LFW and IJB-A data set, it is concluded that the research method in this paper can significantly improve the recognition rate.
Key words : neural network;face recognition;preprocessing;SqueezeNet network;ResNet network

0 引言

    近年來,人臉識(shí)別受到越來越多的關(guān)注,主要是通過神經(jīng)網(wǎng)絡(luò)模型來進(jìn)行人臉識(shí)別。但人臉識(shí)別依然是一個(gè)非常重要但又極具挑戰(zhàn)性的問題,主要是現(xiàn)在大部分的人臉識(shí)別采用的圖像都是靜態(tài)和質(zhì)量較高的圖片,所以識(shí)別效果很好。但在實(shí)際應(yīng)用中,人臉圖像受到光照、表情和較大的姿態(tài)變化的影響,可能導(dǎo)致識(shí)別率急劇下降。因此,采用一種預(yù)處理的方式來處理圖片,提高圖片的質(zhì)量,成為了當(dāng)下研究的關(guān)鍵[1]。并且在邊緣計(jì)算系統(tǒng)中,采用大型網(wǎng)絡(luò)來進(jìn)行人臉識(shí)別是不現(xiàn)實(shí)的,主要是受到處理器的速度和功耗的影響,因此這方面的應(yīng)用成為了研究的熱點(diǎn)。




本文詳細(xì)內(nèi)容請下載:http://www.ihrv.cn/resource/share/2000003569。




作者信息:

況朝青1,2,3,賀  超1,2,3,王均成1,2,3,鄒建紋1,2,3

(1.重慶郵電大學(xué) 通信與信息工程學(xué)院,重慶 400065;2.重慶高校市級(jí)光通信與網(wǎng)絡(luò)重點(diǎn)實(shí)驗(yàn)室,重慶 400065;

3.泛在感知與互聯(lián)重慶市重點(diǎn)實(shí)驗(yàn)室,重慶 400065)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容