《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 设计应用 > 基于DAG-SVMS的非侵入式负荷识别方法
基于DAG-SVMS的非侵入式负荷识别方法
2021年电子技术应用第10期
王 毅1,2,徐元源1,李松浓2
1.重庆邮电大学 通信与信息工程学院,重庆400065;2.国网重庆市电力公司电力科学研究院,重庆404100
摘要: 在供电入口处嵌入非侵入式负荷识别技术,有利于推动建筑节能、实现电网负荷预测、开发智能楼宇、完善智能电网体系建设。据此,提出一种基于有向无环图支持向量机(Directed Acyclic Graph Support Vector Machines,DAG-SVMS)的负荷辨识方法。首先,对总线电流信号进行事件检测,检测到暂态事件后,分离目标负荷暂态电流波形,提取特征,然后,将特征输入预先训练好的DAG-SVMS模型进行分类识别。为提升分类器性能,使用粒子群优化PSO(Particle Swarm Optimization)算法优化DAG-SVMS分类器的参数。为减小累积误差,提出Gini指数优化DAG-SVMS节点顺序的策略。实验结果表明,文中方法识别准确率高,识别速度快,具有可行性。
中圖分類號: TN915
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.211451
中文引用格式: 王毅,徐元源,李松濃. 基于DAG-SVMS的非侵入式負(fù)荷識別方法[J].電子技術(shù)應(yīng)用,2021,47(10):107-112.
英文引用格式: Wang Yi,Xu Yuanyuan,Li Songnong. Non-intrusive load identification method based on improved directed acyclic graph support vector machines[J]. Application of Electronic Technique,2021,47(10):107-112.
Non-intrusive load identification method based on improved directed acyclic graph support vector machines
Wang Yi1,Xu Yuanyuan1,Li Songnong2
1.School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications, Chongqing 400065,China; 2.Chongqing Electric Power Research Institute,Chongqing 404100,China
Abstract: Embedding non-intrusive load identification technology in the power supply entrance is conducive to promote building energy saving, realize power grid load forecasting, develop intelligent buildings and improve the construction of smart grid system. Therefore, this paper proposes a non-intrusive power load identification method based on directed acyclic graph support vector machines(DAG-SVMS). Firstly, the event detection of power system bus current signal is carried out. After the transient event is detected, the transient current waveform of the target load is separated and the features are extracted. Then, the features are input into the pre trained DAG-SVMS model for classification and identification. In order to improve the performance of the classifier, particle awarm optimization(PSO) algorithm is used to optimize the parameters of the DAG-SVMS model. In order to reduce the cumulative error, Gini index is proposed to optimize the node order of DAG-SVMS. The experimental results show that the proposed method has high recognition accuracy, fast recognition speed and feasibility.
Key words : non-intrusive load identification;transient event;DAG-SVMS model;Gini index;PSO algorithm

0 引言

    智能電網(wǎng)建設(shè)是以提高生態(tài)可持續(xù)性、供電安全性和經(jīng)濟(jì)競爭力為目標(biāo)[1],表現(xiàn)為提高負(fù)荷監(jiān)測技術(shù)、提高終端用戶響應(yīng)速度、提高需求側(cè)的節(jié)約能效、提供智能控制技術(shù)、分布式能源的自由接入[2]。非侵入式負(fù)荷識別作為非侵入式負(fù)荷監(jiān)測的核心內(nèi)容,在不改變用戶電路結(jié)構(gòu)的條件下,通過測量總負(fù)荷數(shù)據(jù),即可獲得系統(tǒng)內(nèi)具體用電負(fù)荷的數(shù)量、類別、運(yùn)行狀態(tài)信息,安裝和維護(hù)成本低,易于推廣。該技術(shù)的實(shí)現(xiàn),可為用戶、電力公司以及設(shè)備提供參考[3]。用戶端,用戶用電信息得到反饋,提升節(jié)能意識,規(guī)范用電行為。電力公司端,能提高負(fù)荷預(yù)測的精確度,實(shí)現(xiàn)有效的負(fù)荷規(guī)劃、電能調(diào)度。對設(shè)備制造商來說,可據(jù)此識別出故障或低效設(shè)備,加快技術(shù)革新,推動(dòng)高能效設(shè)備研發(fā)。




本文詳細(xì)內(nèi)容請下載:http://www.ihrv.cn/resource/share/2000003793




作者信息:

王  毅1,2,徐元源1,李松濃2

(1.重慶郵電大學(xué) 通信與信息工程學(xué)院,重慶400065;2.國網(wǎng)重慶市電力公司電力科學(xué)研究院,重慶404100)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容