《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 电子元件 > 设计应用 > 使用Xcelium Machine Learning技术加速验证覆盖率收敛
使用Xcelium Machine Learning技术加速验证覆盖率收敛
2023年电子技术应用第8期
植玉1,马业欣1,徐嵘2
(1.深圳市中兴微电子技术有限公司,广东 深圳 518054;2.楷登企业管理(上海)有限公司深圳分公司,广东 深圳 518000)
摘要: 随着设计越来越复杂,受约束的随机化验证方法已成为验证的主流方法。一般地,验证激励做到不违反spec描述条件下尽量随机,这样验证能跑到的空间才更充分。但是,这给功能覆盖率收敛带来极大挑战,为解决这一难题,Cadence率先推出了仿真器的机器学习功能——Xcelium Machine Learning,采用机器学习技术让功能覆盖率快速收敛,大大提高验证仿真效率。介绍了Xcelium Machine Learning的使用流程,并给出在相同模拟(simulation)验证环境下应用Machine Learning前后情况对比。最后Machine Learning在模拟(simulation)验证中的应用前景进行了展望。
中圖分類號:TN402 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.239805
中文引用格式: 植玉,馬業(yè)欣,徐嶸. 使用Xcelium Machine Learning技術(shù)加速驗證覆蓋率收斂[J]. 電子技術(shù)應(yīng)用,2023,49(8):19-23.
英文引用格式: Zhi Yu,Ma Yexin,Xu Rong. Accelerating verification coverage convergence using Xcelium Machine Learning technology[J]. Application of Electronic Technique,2023,49(8):19-23.
Accelerating verification coverage convergence using Xcelium Machine Learning technology
Zhi Yu1,Ma Yexin1,Xu Rong2
(1.Shenzhen Sanechips Technology Co., Ltd., Shenzhen 518054,China;2.Cadence Design Systems, Shenzhen 518000,China)
Abstract: As designs become more complex, constrained randomized verification methods have become the mainstream method for verification. Generally, the verification incentive should be as random as possible without violating the spec description condition, so that the space that the verification can cover is more sufficient. However, this brings great challenges to the convergence of functional coverage. To solve this problem, Cadence pioneered the machine learning function of the simulator - Xcelium Machine Learning, which uses machine learning technology to quickly converge the functional coverage and greatly improve the efficiency of verification simulation. This article mainly introduces the process of using Xcelium Machine Learning and gives a comparison before and after using machine learning in the same simulation verification environment. Finally, the application prospect of machine learning in simulation verification is prospected.
Key words : random test;constrained random;functional coverage;machine learning;simulation

0 引言

覆蓋率驅(qū)動的隨機測試生成方法是目前隨機測試生成技術(shù)研究的熱點,其目標是為了提高驗證的自動化程度,加快驗證收斂過程,提高驗證效率,即通過覆蓋率指導測試向量生成,進一步減少重復測試向量,加速功能驗證收斂[1]。

如圖1所示,通常地,為加快覆蓋率收斂,驗證人員根據(jù)覆蓋率分析結(jié)果,找到相關(guān)隨機點乃至隨機變量進行分析,然后合理地調(diào)整隨機變量的相應(yīng)約束,反復迭代以達成覆蓋率收斂的目標。這樣做,存在三個問題:(1)浪費人力,重復的事情本應(yīng)留給程序去做而人來做了;(2)陷入驗證方法學應(yīng)用誤區(qū),驗證方法的天平嚴重偏向了定向驗證,隨機激勵隨機力度不夠;(3)增加漏測風險,壓縮了隨機空間,可能會導致存在缺陷的空間未能隨機到而錯過發(fā)現(xiàn)缺陷的機會。



本文詳細內(nèi)容請下載:http://www.ihrv.cn/resource/share/2000005480




作者信息:

植玉1,馬業(yè)欣1,徐嶸2

(1.深圳市中興微電子技術(shù)有限公司,廣東 深圳 518054;2.楷登企業(yè)管理(上海)有限公司深圳分公司,廣東 深圳 518000)

微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容