《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 设计应用 > 基于机器学习建模的液体火箭发动机喷管内型面优化设计
基于机器学习建模的液体火箭发动机喷管内型面优化设计
网络安全与数据治理
李晨沛,周晨初,高玉闪,胡海峰
(西安航天动力研究所,陕西西安710100)
摘要: 喷管是液体火箭发动机产生推力的重要部件。喷管型面的结构将直接影响燃烧所产生的燃气在喷管中的流动情况,进而对发动机的性能产生影响。采用B样条曲线对抛物面型线进行参数化,计算样本集的流体动力学(Computational Fluid Dynamics, CFD)流场,以比冲为优化变量对喷管性能进行评估。研究表明,基于代理模型优化得到的喷管内型面结构与特征线法计算结果基本一致,比冲计算结果相当,最大误差为0.28%。通过代理模型和网格变形方法,可实现液体火箭发动机喷管内型面优化设计,提高优化效率。
中圖分類(lèi)號(hào):V434 2文獻(xiàn)標(biāo)識(shí)碼:ADOI: 10.19358/j.issn.2097-1788.2024.02.007
引用格式:李晨沛,周晨初,高玉閃,等. 基于機(jī)器學(xué)習(xí)建模的液體火箭發(fā)動(dòng)機(jī)噴管內(nèi)型面優(yōu)化設(shè)計(jì)[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2024,43(2):42-48.
Profile design and optimization of liquid rocket engine nozzle based on machine learning
Li Chenpei, Zhou Chenchu, Gao Yushan, Hu Haifeng
(Xi′an Aerospace Propulsion Institute, Xi′an 710100, China)
Abstract: The nozzle is an important part of the liquid rocket engine to provide the thrust. The structure of the nozzle profile could directly affect the flow of combustion gas in the nozzle, and then impact on the performance of the engine. In this paper, Bspline curve is used to construct the paraboloid profile of the nozzle. Based on the Computational Fluid Dynamics (CFD) flow field of sample set, the nozzle performance is evaluated with specific impulse as the optimal variable. The results show that the optimized nozzle profile obtained by the surrogate model is consistent with that by the characteristic line method, and the maximum error is 0.28%. In this work, the internal profile design and optimization is realized via the surrogate model and mesh auto deformation method, and the optimization efficiency is improved.
Key words : internal profile; specific impulse; machine learning; mesh auto deformation method

引言

噴管是液體火箭發(fā)動(dòng)機(jī)產(chǎn)生推力的重要部件。推進(jìn)劑燃燒所產(chǎn)生的高溫高壓燃?xì)庠趪姽苤醒杆倥蛎洠?jīng)由噴管出口排出,產(chǎn)生發(fā)動(dòng)機(jī)所需推力。噴管型面的結(jié)構(gòu)將直接影響燃燒所產(chǎn)生的燃?xì)庠趪姽苤械牧鲃?dòng)情況,進(jìn)而對(duì)發(fā)動(dòng)機(jī)的性能產(chǎn)生影響[1-2]。根據(jù)液體火箭發(fā)動(dòng)機(jī)噴管的結(jié)構(gòu)特點(diǎn),可將噴管分為收縮段和擴(kuò)張段兩個(gè)部分,氣流在噴管擴(kuò)張段處于超聲速流動(dòng),所以一般情況下,擴(kuò)張段對(duì)噴管的性能和尺寸影響最大,如果擴(kuò)張段型面設(shè)計(jì)得不合理,噴管效率就會(huì)受到明顯的影響。通常設(shè)計(jì)噴管型面是基于一維分析理論進(jìn)行型面優(yōu)化,并利用二維或三維CFD流場(chǎng)分析的方法來(lái)進(jìn)行修正。馬國(guó)寶等[3]利用一維等熵流的氣動(dòng)力公式、二次拋物線(xiàn)型面的幾何關(guān)系等,優(yōu)化得到了比沖最優(yōu)的液體火箭發(fā)動(dòng)機(jī)型面結(jié)構(gòu)。方杰等[4]根據(jù)發(fā)動(dòng)機(jī)計(jì)算公式,利用單級(jí)優(yōu)化算法實(shí)現(xiàn)了某型發(fā)動(dòng)機(jī)噴管的多學(xué)科設(shè)計(jì)優(yōu)化。上述方法可有效實(shí)現(xiàn)發(fā)動(dòng)機(jī)內(nèi)型面設(shè)計(jì),但一維方法不能實(shí)現(xiàn)對(duì)噴管性能的準(zhǔn)確評(píng)估。


作者信息:

李晨沛,周晨初,高玉閃,胡海峰

(西安航天動(dòng)力研究所,陜西西安710100)


文章下載地址:http://www.ihrv.cn/resource/share/2000005901


weidian.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容