《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 人工智能 > 設(shè)計(jì)應(yīng)用 > 基于雙視角點(diǎn)云配準(zhǔn)的豬只體尺測(cè)量方法研究
基于雙視角點(diǎn)云配準(zhǔn)的豬只體尺測(cè)量方法研究
電子技術(shù)應(yīng)用
沈域1,徐愛(ài)俊1,2,周素茵1,葉俊華3
1.浙江農(nóng)林大學(xué) 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院;2.全省農(nóng)業(yè)智能感知與機(jī)器人重點(diǎn)實(shí)驗(yàn)室; 3.浙江農(nóng)林大學(xué) 環(huán)境與資源學(xué)院
摘要: 體尺參數(shù)是生豬育種的重要指標(biāo),針對(duì)現(xiàn)有豬只體尺測(cè)量方法中存在的測(cè)量參數(shù)單一、設(shè)備復(fù)雜和大規(guī)模點(diǎn)云數(shù)據(jù)處理受限的問(wèn)題,提出了一種基于雙視角點(diǎn)云配準(zhǔn)的生豬體尺非接觸式測(cè)量方法。首先,基于2臺(tái)Kinect DK深度相機(jī)搭建點(diǎn)云采集系統(tǒng)獲取豬體左右兩側(cè)點(diǎn)云數(shù)據(jù),并采用改進(jìn)的LoOP濾波算法和基于多層次特征提取的點(diǎn)云精簡(jiǎn)方法完成點(diǎn)云預(yù)處理。其次,通過(guò)粗配準(zhǔn)與精配準(zhǔn)相結(jié)合完成豬只雙視角點(diǎn)云拼接。最后,融合法線點(diǎn)云與Alpha Shapes算法提取豬只輪廓特征,實(shí)現(xiàn)多體尺參數(shù)的非接觸式測(cè)量。試驗(yàn)結(jié)果表明,生豬體長(zhǎng)、體高、臀高、體寬、腹寬、臀寬、胸圍和腹圍的平均相對(duì)誤差分別為1.28%、0.88%、1.97%、2.71%、2.83%、3.71%、2.03%和2.17%,整體相對(duì)誤差平均值和絕對(duì)誤差平均值分別為2.20%和1.04 cm。該方法能夠?qū)崿F(xiàn)生豬多體尺參數(shù)的高精度、非接觸式測(cè)量,為種豬的高效篩選提供了技術(shù)參考。
中圖分類號(hào):TP391.41 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.256569
中文引用格式: 沈域,徐愛(ài)俊,周素茵,等. 基于雙視角點(diǎn)云配準(zhǔn)的豬只體尺測(cè)量方法研究[J]. 電子技術(shù)應(yīng)用,2025,51(11):35-45.
英文引用格式: Shen Yu,Xu Aijun,Zhou Suyin,et al. Research on pig body size measurement method based on dual view point cloud registration[J]. Application of Electronic Technique,2025,51(11):35-45.
Research on pig body size measurement method based on dual view point cloud registration
Shen Yu1,Xu Aijun1,2,Zhou Suyin1,Ye Junhua3
1.College of Mathematics and Computer Science, Zhejiang A&F University; 2.Zhejiang Key Laboratory of Intelligent Sensing and Robotics for Agriculture; 3.College of Environment and Resources, Zhejiang A&F University
Abstract: Body size parameters are critical indicators in pig breeding. A non-contact pig body size measurement method using dual view point cloud registration was proposed to address the isssues of single parameter, complex equipment, and limited processing of large-scale point cloud data exsited in current pig body size measurement methods. Firstly, we constructed a data acquisition system with two Kinect DK depth cameras to collect bilateral point cloud data of pig and then we preprocessed the data using an improved Local Outlier Probability (LoOP) filtering algorithm and a multi-level feature extraction method for point cloud simplification. Secondly, the dual view point cloud registration was completed by combining coarse registration and fine registration algrithms. Finally, We integrated normal vector point cloud with the Alpha Shapes algorithm to extract pig contour features of pig, achieving non-contact measurement of multiple body size parameters. The experimental results showed that the average relative errors of pig body length, body height, hip height, body width, abdominal width, hip width, chest circumference, and abdominal circumference were 1.28%, 0.88%, 1.97%, 2.71%, 2.83%, 3.71%, 2.03%, and 2.17%, respectively. The overall average relative error and absolute error were 2.20% and 1.04 cm, respectively. The method in this study provides an accurate, non-invasive solution for multi-parameter measurement of pig, offering technical support for efficient breeding selection in pig farming.
Key words : pig;dual view;depth cameras;point cloud;body size measurement

引言

生豬體尺測(cè)量是生豬育種中一項(xiàng)重要的基礎(chǔ)性工作[1],通過(guò)系統(tǒng)的體型數(shù)據(jù)采集和分析,能夠?yàn)檫x育優(yōu)質(zhì)種豬[2]、優(yōu)化遺傳性能、提高生產(chǎn)效益提供科學(xué)依據(jù)。

隨著機(jī)器視覺(jué)技術(shù)的發(fā)展,利用非接觸式方法測(cè)量動(dòng)物體尺參數(shù)成為必然趨勢(shì)[3-4]。劉同海等[5]基于機(jī)器視覺(jué)技術(shù),提出復(fù)雜背景下的豬體信息提取、頭尾去除以及彎曲姿態(tài)下體尺測(cè)點(diǎn)坐標(biāo)提取算法。初夢(mèng)苑等[6]提出一種基于關(guān)鍵幀提取與頭頸部去除的奶牛體尺自動(dòng)測(cè)量方法,提高了奶牛體尺測(cè)量的效率與精度,平均相對(duì)誤差小于3.3%。Suvarna等[7]將豬只圖像與神經(jīng)網(wǎng)絡(luò)相結(jié)合預(yù)測(cè)生豬體尺和體重,準(zhǔn)確性較高。上述方法在二維圖像處理中表現(xiàn)出色,但難以滿足三維數(shù)據(jù)處理的需求。深度學(xué)習(xí)技術(shù)的出現(xiàn),使動(dòng)物的三維體尺測(cè)量成為可能。張顯宇[8]提出A-Unet深度學(xué)習(xí)模型,融合CBAM注意力機(jī)制與空洞卷積增強(qiáng)特征提取,通過(guò)動(dòng)態(tài)網(wǎng)格法定位牛體關(guān)鍵測(cè)點(diǎn)并轉(zhuǎn)換標(biāo)定參數(shù),實(shí)測(cè)牛的體高、體長(zhǎng)及體斜長(zhǎng)平均相對(duì)誤差均低于4.3%。王小品[9]提出多目標(biāo)生豬體尺關(guān)鍵點(diǎn)檢測(cè)算法YOLOv5DA-HRST,通過(guò)可變形卷積與自適應(yīng)特征融合提升姿態(tài)分類精度,結(jié)合輕量HRST網(wǎng)絡(luò),集成Swin Transformer優(yōu)化關(guān)鍵點(diǎn)關(guān)聯(lián),實(shí)現(xiàn)密集場(chǎng)景下站立豬體的關(guān)鍵點(diǎn)檢測(cè),精度達(dá)81.5%。李想[10]提出了雙視角點(diǎn)云配準(zhǔn)算法TransFCGF,融合卷積網(wǎng)絡(luò)提取局部特征與圖卷積增強(qiáng)全局表征,通過(guò)Transformer實(shí)現(xiàn)雙點(diǎn)云信息交互,并篩選重疊關(guān)鍵點(diǎn)提升魯棒性,為多視角配準(zhǔn)優(yōu)化提供了新方案。耿艷利等[11]基于PointNet網(wǎng)絡(luò)構(gòu)建點(diǎn)云語(yǔ)義分割模型,通過(guò)引入注意力機(jī)制,使豬體關(guān)鍵部位的識(shí)別準(zhǔn)確率提升至86.3%,體尺平均絕對(duì)誤差控制在5 cm以內(nèi)。潘泰任等[12]通過(guò)球體標(biāo)定與奇異值分解進(jìn)行點(diǎn)云配準(zhǔn),并結(jié)合主成分分析校正羊體傾斜姿態(tài),實(shí)現(xiàn)了羊6項(xiàng)體尺參數(shù)的同步測(cè)量,其中胸圍測(cè)量誤差小于2.5%,能滿足羊只育種與健康監(jiān)測(cè)的需求。李哲等[13]將Super4PCS融合SIFT3D關(guān)鍵點(diǎn)的非剛性粗配準(zhǔn)與改進(jìn)的ICP點(diǎn)云精配準(zhǔn)相結(jié)合測(cè)量豬只體尺,有效降低了角度和光源對(duì)測(cè)量結(jié)果的影響,平均相對(duì)誤差為2.06%。Guo等[14-16]基于兩側(cè)對(duì)稱和幾何特征形態(tài)相似,提出了一種豬只三維點(diǎn)云位姿歸一化的方法,有效提升了豬只體尺測(cè)量的準(zhǔn)確性。Wang[17]利用點(diǎn)云的橫截面特征檢測(cè)豬體心圍的測(cè)量位置,得到豬體心圍點(diǎn)云切片,并擬合曲線計(jì)算豬只體長(zhǎng)。綜上,現(xiàn)有基于三維點(diǎn)云的體尺測(cè)量方法在精度和效率上雖然取得了顯著進(jìn)展,但在測(cè)量參數(shù)的豐富性、設(shè)備的復(fù)雜性以及大規(guī)模點(diǎn)云數(shù)據(jù)處理上仍存在一定的局限。

針對(duì)現(xiàn)有基于三維點(diǎn)云的豬只體尺測(cè)量方法中存在的測(cè)量參數(shù)數(shù)量少、設(shè)備復(fù)雜等問(wèn)題,本文提出了一種基于雙視角點(diǎn)云配準(zhǔn)的豬只體尺測(cè)量方法,首先使用兩臺(tái)Kinect DK深度相機(jī)采集豬只點(diǎn)云,通過(guò)改進(jìn)后的LoOP濾波算法去除點(diǎn)云異常值,并基于多層次特征提取的點(diǎn)云精簡(jiǎn)方法均勻全局密度分布和保留幾何細(xì)節(jié),再通過(guò)雙視角點(diǎn)云配準(zhǔn)獲取豬只三維點(diǎn)云,最后將法線點(diǎn)云和Alpha Shapes邊界提取算法相結(jié)合,實(shí)現(xiàn)了豬只多項(xiàng)體尺參數(shù)的非接觸式測(cè)量。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://www.ihrv.cn/resource/share/2000006838


作者信息:

沈域1,徐愛(ài)俊1,2,周素茵1,葉俊華3

(1.浙江農(nóng)林大學(xué) 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,浙江 杭州 311300;

2.全省農(nóng)業(yè)智能感知與機(jī)器人重點(diǎn)實(shí)驗(yàn)室,浙江 杭州 311300;

3.浙江農(nóng)林大學(xué) 環(huán)境與資源學(xué)院,浙江 杭州 311300)


官方訂閱.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。