《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 微波|射频 > 设计应用 > Kalman滤波算法在外测数据处理中的应用研究
Kalman滤波算法在外测数据处理中的应用研究
电子技术应用
娄广国,顾梓仪,曹怡,何定坤,李杨,赵军杰
西昌卫星发射中心
摘要: 在应用Kalman滤波算法对测量数据进行实时处理时,常采用调整滤波增益矩阵的方法解决滤波发散问题。在实时数据处理中,不能通过后验方式确定调整滤波增益矩阵的增益系数,需要设计一种针对数据的自适应确定方法。通过检验数据序列的误差特性,调整滤波记忆衰减步长,确定滤波记忆衰减系数,采用tanh函数计算增益系数。仿真结果表明,采用自适应增益系数的Kalman滤波算法能够较好地适应常见测量数据,可以应用于测量数据的实时处理。
關(guān)鍵詞: Kalman滤波 自适应 增益系数
中圖分類(lèi)號(hào):V557+.1 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.256866
中文引用格式: 婁廣國(guó),顧梓儀,曹怡,等. Kalman濾波算法在外測(cè)數(shù)據(jù)處理中的應(yīng)用研究[J]. 電子技術(shù)應(yīng)用,2025,51(12):62-66.
英文引用格式: Lou Guangguo,Gu Ziyi,Cao Yi,et al. Application research of the Kalman filtering algorithm in external measurement data processing[J]. Application of Electronic Technique,2025,51(12):62-66.
Application research of the Kalman filtering algorithm in external measurement data processing
Lou Guangguo,Gu Ziyi,Cao Yi,He Dingkun,Li Yang,Zhao Junjie
Xichang Satellite Launch Center
Abstract: In the application of Kalman filtering algorithm for real-time processing of measurement data, methods are often employed to adjust the filter gain matrix in order to address divergence issues. In real-time data processing, it is not possible to determine the gain coefficients of the filter gain matrix adjustment through a posteriori means; therefore, an adaptive determination method targeting the data must be designed. This paper examines the error characteristics of the data sequence, adjusts the filter memory decay step size, determines the filter memory decay coefficient, and employs the hyperbolic tangent (tanh) function to calculate the gain coefficients. Simulation results demonstrate that the Kalman filtering algorithm with adaptive gain coefficients can effectively adapt to common measurement data and is suitable for real-time processing of measurement data.
Key words : Kalman filtering algorithm;adaptive;gain coefficient

引言

Kalman濾波在GPS數(shù)據(jù)處理、慣性導(dǎo)航等領(lǐng)域應(yīng)用廣泛,經(jīng)典的卡爾曼濾波應(yīng)用的一個(gè)先決條件是建立準(zhǔn)確的動(dòng)力學(xué)模型和觀測(cè)模型,具有已知的模型噪聲和觀測(cè)噪聲統(tǒng)計(jì),這些條件的欠缺將會(huì)導(dǎo)致卡爾曼濾波性能下降甚至發(fā)散。在測(cè)控系統(tǒng)外測(cè)數(shù)據(jù)實(shí)時(shí)數(shù)據(jù)處理應(yīng)用中,模型噪聲和觀測(cè)噪聲的不確定性成為Kalman濾波算法應(yīng)用的制約因素[1]。

為了克服經(jīng)典卡爾曼濾波的這一缺點(diǎn),在實(shí)際應(yīng)用中常采用調(diào)整濾波增益矩陣的方法加以解決。在實(shí)時(shí)數(shù)據(jù)處理中,不能通過(guò)后驗(yàn)方式確定調(diào)整濾波增益矩陣的增益系數(shù),本文提出一種針對(duì)數(shù)據(jù)的自適應(yīng)確定方法,通過(guò)檢驗(yàn)數(shù)據(jù)序列的誤差特性,自適應(yīng)地確定增益系數(shù)[2-3]。經(jīng)典卡爾曼濾波假定動(dòng)力學(xué)模型的噪聲序列和測(cè)量噪聲序列均為白噪聲序列,在色噪聲情況下,可應(yīng)用狀態(tài)變量擴(kuò)增法來(lái)解決,在實(shí)時(shí)數(shù)據(jù)處理外測(cè)系統(tǒng)的濾波應(yīng)用中,主要目的是通過(guò)濾波,獲取狀態(tài)空間的數(shù)據(jù)結(jié)果,其中主要的一項(xiàng)指標(biāo)是求出1階的速度分量,本文均以速度的質(zhì)量為標(biāo)準(zhǔn)進(jìn)行計(jì)算和評(píng)價(jià)。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://www.ihrv.cn/resource/share/2000006878


作者信息:

婁廣國(guó),顧梓儀,曹怡,何定坤,李楊,趙軍杰

(西昌衛(wèi)星發(fā)射中心,四川 西昌 615000)


subscribe.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。