基于KDMSPCS-GRNN的室内定位技术研究
信息技术与网络安全
王 超1,单志勇2
(1.东华大学 信息科学与技术学院,上海201620;2.数字化纺织技术教育部工程中心,上海201620)
摘要: 针对利用广义神经网络(Generalized Regression Neural Network,GRNN)搭建的定位预测模型定位精度低、效率慢等问题,基于动态分群策略,提出一种线性递减粒子群(Linear Decreasing Contraction Particle Swarm Optimization,LDCPSO)和布谷鸟(Cuckoo Search,CS)混合寻优算法,并利用此算法为GRNN选择最优参数,构建定位预测模型。该算法主要利用K均值聚类算法(K-means)对整个种群进行周期性的分群,底层使用LDCPSO算法优化各个子群,并将最优粒子传至高层,高层使用CS算法优化各个子群的最优粒子,并将最终结果返回底层,执行下一次迭代。实验过程中,一方面将提出的算法应用于多个测试函数,结果表明该算法具有更好的收敛速度和收敛精度;另一方面利用该算法搭建定位模型,并与其他定位模型对比,结果显示该定位模型具有更好的定位效果。
中圖分類(lèi)號(hào): TP301.6
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.19358/j.issn.2096-5133.2021.04.004
引用格式: 王超,單志勇. 基于KDMSPCS-GRNN的室內(nèi)定位技術(shù)研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(4):20-27,45.
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.19358/j.issn.2096-5133.2021.04.004
引用格式: 王超,單志勇. 基于KDMSPCS-GRNN的室內(nèi)定位技術(shù)研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(4):20-27,45.
Research on indoor positioning technology based on KDMSPCS-GRNN
Wang Chao1,Shan Zhiyong2
(1.School of Information Science and Technology,Donghua University,Shanghai 201620,China; 2.Digital Textile Technology Ministry of Education Engineering Center,Shanghai 201620,China)
Abstract: Aiming at the problems of low positioning accuracy and slow efficiency in the positioning prediction model built by the generalized neural network(GRNN),based on the dynamic clustering strategy,this paper proposed a Linear Decreasing Contraction Particle Swarm Optimization(LDCPSO) and Cuckoo Search(CS) hybrid optimization algorithm,and used this algorithm to select the optimal parameters for GRNN to construct a positioning prediction model.The algorithm mainly uses the K-means clustering algorithm to periodically group the entire population.The bottom layer uses the LDCPSO algorithm to optimize each subgroup,and the optimal particles are transmitted to the high level.The high level uses the CS algorithm to optimize the optimal particles of each subgroup and returns the final result to the bottom layer to execute the next iteration.During the experiment,on the one hand,the proposed algorithm was applied to multiple test functions,and the results showed that the algorithm has better convergence speed and accuracy;on the other hand,the algorithm was used to build a positioning model and compared with other positioning models,the results showed the positioning model has a better positioning effect.
Key words : LDCPSO algorithm;CS algorithm;K-mean algorithm;GRNN algorithm;test function
0 引言
隨著第四代網(wǎng)絡(luò)通信技術(shù)的成熟和微電子行業(yè)的迅速發(fā)展,移動(dòng)終端設(shè)備在人們?nèi)粘I钪械玫胶艽蟪潭鹊钠占埃藗儗?duì)基于用戶(hù)位置服務(wù)(Location Based Services,LBS)[1]的需求愈來(lái)愈廣泛。而室內(nèi)定位技術(shù)作為L(zhǎng)BS中必不可少的底層技術(shù),它的好壞將直接影響服務(wù)的質(zhì)量,因此室內(nèi)定位領(lǐng)域受到技術(shù)人員廣泛關(guān)注,無(wú)線(xiàn)定位技術(shù)得到了極大的發(fā)展。目前已經(jīng)提出的定位技術(shù)有RFID、UWB、ZigBee[2]和WiFi[3]等。相比于其他幾種技術(shù)而言,WiFi在人們?nèi)粘I钪械母采w率更高,且對(duì)硬件設(shè)備要求較低,故而更具實(shí)踐價(jià)值。目前WiFi定位技術(shù)已經(jīng)成為室內(nèi)定位技術(shù)研究的主要熱點(diǎn)之一。
本文詳細(xì)內(nèi)容請(qǐng)下載:http://www.ihrv.cn/resource/share/2000003473
作者信息:
王 超1,單志勇2
(1.東華大學(xué) 信息科學(xué)與技術(shù)學(xué)院,上海201620;2.數(shù)字化紡織技術(shù)教育部工程中心,上海201620)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
