一种基于实例分割和点云配准的六维位姿估计方法
信息技术与网络安全
侯大伟
(中国科学技术大学 信息科学技术学院,安徽 合肥230026)
摘要: 本文提出一种基于Mask R-CNN实例分割网络和Super4PCS点云配准算法来估计物体六维姿态的方法。通过目标点云与已知位姿的参考点云进行配准,可以获取目标的六维姿态。但实际中往往采用三维设备扫描目标的整体环境,生成的点云数量庞大,直接作为源点云与参考点云配准时,会由于候选集较多从而导致运算时间太长,因此本文先对目标实例分割处理后再配准:首先,利用深度相机获取整体环境的RGB-D图,其次利用Mask R-CNN模型将把目标分割出来,并将分割的目标RGB-D图转化为点云图,利用Super4PCS点云配准算法与参考点云进行配准,最终得到目标的六维位姿。在自制作的数据集上进行了验证,对比分割前后的四组实验,时间降低率约为60%-80%,有效证明了本方法的可行性。
中圖分類號: TP391
文獻(xiàn)標(biāo)識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.06.010
引用格式: 侯大偉. 一種基于實(shí)例分割和點(diǎn)云配準(zhǔn)的六維位姿估計(jì)方法[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(6):56-61.
文獻(xiàn)標(biāo)識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.06.010
引用格式: 侯大偉. 一種基于實(shí)例分割和點(diǎn)云配準(zhǔn)的六維位姿估計(jì)方法[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(6):56-61.
6D pose estimation based on instance segmentation and point cloud registration
Hou Dawei
(School of Information Science and Technology,University of Science and Technology of China,Hefei 230026,China)
Abstract: This paper proposes a method to estimate the six-dimensional pose of an object based on the Mask R-CNN instance segmentation network and the Super4PCS point cloud registration algorithm. The six-dimensional pose of the target can be generally estimated by registering the point cloud of the environment and the target. The number of point clouds generated by the scanning the overall environment with 3D equipment is huge, the calculation time will be too long when directly using the source point cloud to register the reference point cloud. Therefore, this article will divide the target before registration. Firstly, we obtain the RGB-D map of the overall environment by the depth-sensing camera. Secondly, we use the Mask-R CNN model to segment the target, after that we convert the RGB-D map of the segmented target into a point cloud image and complete the point cloud registration of the reference and the segmented target through Super4PCS algorithm. We finally obtain the six-dimensional pose of the target and compare the four sets of experiments based on our dataset. The results show that the time reduction rate is about 60%-80%, which effectively illustrates the feasibility of our method.
Key words : 6D pose estimation;Mask R-CNN instance segmentation;Super4PCS point cloud registration
0 引言
點(diǎn)云配準(zhǔn)是三維重建、工業(yè)測量、機(jī)器人抓取等方面的一種常見方法,目標(biāo)是將不同視角下點(diǎn)云拼接成一塊完整的點(diǎn)云數(shù)據(jù)。隨著深度相機(jī)的廣泛應(yīng)用,研究人員可以便捷地獲取三維空間的點(diǎn)云數(shù)據(jù),用以估計(jì)物體的六維位姿。圖1(a)和圖1(b)是在不同視角下的存在交集的兩片點(diǎn)云,不斷地調(diào)整交集部分的點(diǎn)云直到基本重疊,最終兩片點(diǎn)云拼接為一個整體(圖1(c))。
以上兩片點(diǎn)云配準(zhǔn)的過程,本質(zhì)上得到的是兩片點(diǎn)云之間相對位姿的變換矩陣。假設(shè)其中一片點(diǎn)云參考目標(biāo),即相對世界坐標(biāo)系的位姿參數(shù)均已知,便可推理得到另一片點(diǎn)云的位姿,從而實(shí)現(xiàn)目標(biāo)點(diǎn)云的位姿估計(jì)。
本文詳細(xì)內(nèi)容請下載:http://www.ihrv.cn/resource/share/2000003601
作者信息:
侯大偉
(中國科學(xué)技術(shù)大學(xué) 信息科學(xué)技術(shù)學(xué)院,安徽 合肥230026)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
