《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 测试测量 > 设计应用 > Faster RCNN和LGDF结合的肝包虫病CT图像病灶分割
Faster RCNN和LGDF结合的肝包虫病CT图像病灶分割
2021年电子技术应用第7期
刘志华1,王正业1,李丰军2,严传波2
1.新疆医科大学 公共卫生学院,新疆 乌鲁木齐830011;2.新疆医科大学 医学工程技术学院,新疆 乌鲁木齐830011
摘要: 针对人工阅片工作量大、阅片质量不佳且容易出现漏检、错判等问题,将Faster RCNN目标检测模型应用于肝包虫病CT图像的检测,并对目标检测模型进行改进:基于图片分辨率低、病灶大小不同的特点,使用网络深度更深的残差网络(ResNet101)代替原来的VGG16网络,用以提取更丰富的图像特征;根据目标检测模型得出的病灶坐标信息引入LGDF模型进一步对病灶进行分割,从而辅助医生更高效的诊断疾病。实验结果表明,基于ResNet101特征提取网络的目标检测模型能够有效提取目标的特征,检测准确率相比原始检测模型提高2.1%,具有较好的检测精度。同时,将病灶坐标信息引入LGDF模型,相比于原始的LGDF模型更好地完成了对肝包虫病病灶的分割,Dice系数提高了5%,尤其对多囊型肝包虫病CT图像的分割效果较好。
中圖分類號(hào): TN911.73;TP751.1
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.200923
中文引用格式: 劉志華,王正業(yè),李豐軍,等. Faster RCNN和LGDF結(jié)合的肝包蟲病CT圖像病灶分割[J].電子技術(shù)應(yīng)用,2021,47(7):33-37,43.
英文引用格式: Liu Zhihua,Wang Zhengye,Li Fengjun,et al. CT image segmentation of liver hydatid disease based on Faster RCNN and LGDF[J]. Application of Electronic Technique,2021,47(7):33-37,43.
CT image segmentation of liver hydatid disease based on Faster RCNN and LGDF
Liu Zhihua1,Wang Zhengye1,Li Fengjun2,Yan Chuanbo2
1.College of Public Health,Xinjiang Medical University,Urumqi 830011,China; 2.College of Medical Engineering Technology,Xinjiang Medical University,Urumqi 830011,China
Abstract: In view of the large workload of manual image reading, poor image reading quality, and prone to missed inspections and wrong judgments,in this paper, the faster RCNN target detection model is applied to the detection of hepatic echinococcosis CT images. And the target detection model is improved: based on the characteristics of low image resolution and different lesion sizes, the residual network with deeper network depth(ResNet101) is used to replace the original VGG16 to extract richer image features; according to the coordinate information of the lesion obtained by the object detection model, the LGDF model is introduced to further segment the lesion to assist doctors in diagnosing the disease more efficiently. The experimental results show that the object detection model based on the ResNet101 feature extraction network can effectively extract the features of the target, and the detection accuracy is 2.1% higher than the original detection model, and it has better detection accuracy. At the same time, the coordinate information of the lesion is introduced into the LGDF model. Compared with the original LGDF model, the segmentation of hepatic hydatid lesions is better completed, the Dice coefficient is increased by 5%, and the segmentation effect is better especially for the multi cystic liver hydatidosis CT image.
Key words : faster RCNN;LGDF;deep learning;object detection;lesion segmentation

0 引言

    肝包蟲病(Hepatic Echinococcosis,HE)又稱棘球幼病,是一種人畜共患寄生蟲病,主要流行于畜牧業(yè)發(fā)達(dá)地區(qū)[1-3]。肝包蟲病患者在患病初期無特異性的癥狀及體征,隨著包囊的生長(zhǎng),患者出現(xiàn)臨床癥狀,引起自身機(jī)體的感染并發(fā)生一些并發(fā)癥,其中部分并發(fā)癥可能危及患者生命,需要醫(yī)生的及時(shí)診斷和緊急干預(yù)[4-5]。醫(yī)學(xué)影像學(xué)檢查是診斷疾病的一種方式,能夠?yàn)榛颊叩牟∏樘峁┯杏玫男畔?,?duì)于肝包蟲病的影像學(xué)診斷是由醫(yī)生查看拍攝的CT圖片診斷患者是否發(fā)生疾病。隨著影像設(shè)備的更新和發(fā)展,醫(yī)院每天產(chǎn)出大量的醫(yī)學(xué)圖片,醫(yī)生閱片時(shí)容易發(fā)生視覺疲勞現(xiàn)象,往往出現(xiàn)診斷效率低下、漏檢、誤判等問題。因此,本文基于目標(biāo)檢測(cè)方法實(shí)現(xiàn)肝包蟲病病灶的檢測(cè),從而輔助醫(yī)生智能診斷疾病。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://www.ihrv.cn/resource/share/2000003650。




作者信息:

劉志華1,王正業(yè)1,李豐軍2,嚴(yán)傳波2

(1.新疆醫(yī)科大學(xué) 公共衛(wèi)生學(xué)院,新疆 烏魯木齊830011;2.新疆醫(yī)科大學(xué) 醫(yī)學(xué)工程技術(shù)學(xué)院,新疆 烏魯木齊830011)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容