《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 设计应用 > 基于噪音拟合的优化变步长滤波最小均方算法
基于噪音拟合的优化变步长滤波最小均方算法
2021年电子技术应用第11期
钱 拴1,2,高健珍1,2,代永平1,2
1.南开大学 光电子薄膜器件与技术研究所,天津300350; 2.天津市光电子薄膜器件与技术重点实验室,天津300350
摘要: 为了更快地实现主动降噪,设计了噪音多项式拟合模型,提出了改进的变步长滤波最小均方算法(Improved Filtered-x Least Mean Square,IFxLMS)。该算法在统计噪音信号的同时,对噪音信号进行拟合与预测,随后结合误差信号与预测信号对步长进行调节,达到快速调节的目的。为了验证该算法的性能,将该算法与传统变步长滤波最小均方算法对比试验,仿真结果显示,在相同噪音条件下,新算法将噪音信号降到10 dB、20 dB、30 dB、35 dB等信噪比时,所需的迭代次数减少了4次~60次不等,在同时新算法的鲁棒性也优于普通的滤波变步长最小均方算法。
中圖分類號: TN911.72
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.201091
中文引用格式: 錢拴,高健珍,代永平. 基于噪音擬合的優(yōu)化變步長濾波最小均方算法[J].電子技術(shù)應(yīng)用,2021,47(11):81-84,89.
英文引用格式: Qian Shuan,Gao Jianzhen,Dai Yongping. Optimal variable step filtered-x least mean square algorithm based on noise fitting[J]. Application of Electronic Technique,2021,47(11):81-84,89.
Optimal variable step filtered-x least mean square algorithm based on noise fitting
Qian Shuan1,2,Gao Jianzhen1,2,Dai Yongping1,2
1.Institute of Optoelectronic Thin Film Devices and Technology,Nankai University,Tianjin 300350,China; 2.Key Laboratory for Photoelectronic Thin Film Devices and Technology of Tianjing,Tianjin 300350,China
Abstract: In order to achieve active noise reduction faster, a noise polynomial fitting model is designed, and an improved variable step size filtering least mean square algorithm(improved filtered-x least mean square, IFxLMS) is proposed. The algorithm performs fitting and prediction to the noise signal while counting the noise signal, and then adjusts the step length by combining the error signal and the predicted signal to achieve the purpose of rapid adjustment. In order to verify the performance of the algorithm, the algorithm is compared with the traditional variable step filter-x least mean square algorithm. The simulation results show that under the same noise conditions, when the new algorithm reduces the noise signal to 10 dB, 20 dB, 30 dB, 35 dB, etc. The number of iterations required has been reduced from 4 to 60. At the same time, the robustness of the new algorithm is better than that of the ordinary variable step size filtered-x least mean square algorithm.
Key words : filtered-x least mean square algorithm;noise fitting;variable step size;active noise reduction

0 引言

    隨著城市化進(jìn)程,環(huán)境的噪音問題日益突出[1],降噪的設(shè)備及相關(guān)算法逐漸成為了研究的熱點(diǎn)問題[2],濾波最小均方算法(Filtered-x Least Mean Square,F(xiàn)xLMS)由于其計(jì)算量相對較小被大量應(yīng)用于主動(dòng)降噪設(shè)備[3]。最小均方算法的降噪步長決定了系統(tǒng)的降噪速度以及降噪精度,步長的迭代公式也決定了算法的運(yùn)算量,進(jìn)而影響設(shè)備降噪的速度[4]。FxLMS可用于主動(dòng)降噪設(shè)備以降低設(shè)備局部噪音,包含的降噪場景有電梯[5]、高鐵、汽車[6]、耳機(jī)[7]以及潛艇等方面,在社會(huì)應(yīng)用中有極大應(yīng)用價(jià)值。

    算法迭代步長是FxLMS研究重要方向之一[8],較大的迭代步長可以使得FxLMS算法收斂速度較快,但是系統(tǒng)的穩(wěn)態(tài)性不高;較小的迭代步長可以提供較穩(wěn)態(tài)的結(jié)果,但是系統(tǒng)的迭代次數(shù)過多,收斂速度較慢。針對以上問題,文獻(xiàn)[9]提出歸一化泄露FxLMS算法,收斂步長受到誤差信號的影響,同時(shí)也避免了因誤差信號過小而導(dǎo)致的步長過大問題;馬英博[5]改善變步長因子更新的方式是計(jì)算出誤差信號與輸入信號之間的相關(guān)性,再根據(jù)相關(guān)性更改步長的迭代;文獻(xiàn)[10]使得步長以指數(shù)函數(shù)變化;文獻(xiàn)[11]更改了步長因子的計(jì)算公式,使得算法在收斂初期步長小以實(shí)現(xiàn)算法的收斂,中期步長變大快速收斂,后期降低收斂因子提高收斂精度。




本文詳細(xì)內(nèi)容請下載:http://www.ihrv.cn/resource/share/2000003832。




作者信息:

錢  拴1,2,高健珍1,2,代永平1,2

(1.南開大學(xué) 光電子薄膜器件與技術(shù)研究所,天津300350;

2.天津市光電子薄膜器件與技術(shù)重點(diǎn)實(shí)驗(yàn)室,天津300350)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容