《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 设计应用 > 基于自组织模糊神经网络的大功率LED调光模型
基于自组织模糊神经网络的大功率LED调光模型
2021年电子技术应用第12期
李纪宾,饶欢乐,王 晨,钱依凡,洪哲扬
杭州电子科技大学 自动化学院,浙江 杭州310018
摘要: 大功率LED光度输出不仅与操作电流大小有关,且受传热过程的时滞时变不确定因素影响难以预测。针对传统机理建模存在参数提取困难、模型适应性弱等缺点,提出基于模糊神经网络建模算法,从而构建以操作电流、热沉温度、环境温度为输入,光通量为输出的调光模型。模型结构和参数依据在线数据进行调整,通过递推学习,模糊规则得到增量式完善,进而不断逼近实际动态过程。结果表明,利用该方法构建的调光模型与参考模型理论值相对误差小于3%,与其他模型相比,结构更加紧凑,预测精度更高。
中圖分類(lèi)號(hào): TN364+.2
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.201125
中文引用格式: 李紀(jì)賓,饒歡樂(lè),王晨,等. 基于自組織模糊神經(jīng)網(wǎng)絡(luò)的大功率LED調(diào)光模型[J].電子技術(shù)應(yīng)用,2021,47(12):105-109.
英文引用格式: Li Jibin,Rao Huanle,Wang Chen,et al. Dimming model of high-power LED based on self-organizing fuzzy neural network[J]. Application of Electronic Technique,2021,47(12):105-109.
Dimming model of high-power LED based on self-organizing fuzzy neural network
Li Jibin,Rao Huanle,Wang Chen,Qian Yifan,Hong Zheyang
School of Automation,Hangzhou Dianzi University,Hangzhou 310018,China
Abstract: The luminosity output of high-power LED system is not only related to the current, but also hard to be predicted due to the uncertain nonlinear characters of thermal process. In view of the difficulties in extracting the parameters of the mechanism model and poor adaptability, an online modeling method was proposed to construct a fuzzy neural network with ambient temperature, heat sink temperature and operating current as input,and luminous flux as output. The model structure is self-organized and adjusted according to clustering analysis and error evaluation criteria. EKF algorithm and recursive least square method are used to learn network parameters. Through recursive learning, the rule is improved incrementally so that the model can approximate the actual system process as fast as possible. Validity of the algorithm is verified in a typical nonlinear system. Results show that the relative error between the theoretical values of the photometric prediction model and the reference model is less than 3%. Comparing with other model, this model has more compact structure and better generalization performance.
Key words : high-power LED;PET model;self-organizing fuzzy neural network;structure identification;parameter learning

0 引言

    相較于傳統(tǒng)光源,大功率LED具有高光效和靈活可控等優(yōu)勢(shì),在提供交互式或動(dòng)態(tài)照明方面頗具潛力,如建筑照明[1]、太陽(yáng)光模擬器[2]等。這類(lèi)光源通常要求光度輸出寬范圍動(dòng)態(tài)可調(diào),并且快速達(dá)到預(yù)定的精度要求。盡管LED自身開(kāi)關(guān)特性可達(dá)兆赫茲,但由于系統(tǒng)散熱存在時(shí)滯、時(shí)變不確定特性,使得光度輸出規(guī)律難以預(yù)測(cè)。構(gòu)建可分析、可計(jì)算和執(zhí)行的調(diào)光模型對(duì)實(shí)現(xiàn)更加精細(xì)化的調(diào)光控制具有重要意義。

    經(jīng)典光電熱[3]理論表明LED結(jié)溫、光通量、電流存在多參數(shù)耦合關(guān)系。而后,Tao[4]等人通過(guò)機(jī)理分析,構(gòu)建動(dòng)態(tài)光電熱模型,用于計(jì)算光通量輸出隨系統(tǒng)溫升的衰減變化。文獻(xiàn)[5]~[6]考慮環(huán)境溫度的熱因素影響,構(gòu)建不同操作功率下的線性擾動(dòng)模型,設(shè)計(jì)了溫度前饋補(bǔ)償器,以保證光度的恒定輸出。文獻(xiàn)[7]建立了基于狀態(tài)空間表達(dá)的線性預(yù)測(cè)模型,便于移植到低成本控制器中去。文獻(xiàn)[8]采用多項(xiàng)式插值方法辨識(shí)不同驅(qū)動(dòng)電流下的傳遞函數(shù)的零極點(diǎn)增益,構(gòu)建了線性參數(shù)時(shí)變模型,但該方法需預(yù)先設(shè)置整個(gè)工作范圍的操作條件,計(jì)算量較大。盡管LED物理機(jī)制明確,但多數(shù)模型[3-6]基于等效阻容網(wǎng)絡(luò)分析,部分物理量(如結(jié)溫)并不易于測(cè)量,且模型采用離線設(shè)計(jì),在長(zhǎng)時(shí)運(yùn)行或環(huán)境變化較大的條件下將存在失配問(wèn)題。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://www.ihrv.cn/resource/share/2000003881




作者信息:

李紀(jì)賓,饒歡樂(lè),王  晨,錢(qián)依凡,洪哲揚(yáng)

(杭州電子科技大學(xué) 自動(dòng)化學(xué)院,浙江 杭州310018)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容