利用LMedS算法与特征值法的点云平面拟合方法
信息技术与网络安全 3期
苏毅辉,陈志聪,吴丽君
(福州大学 物理与信息工程学院,福建 福州350108)
摘要: 针对三维点云数据中存在的异常点会对平面拟合过程产生不利的影响,提出了一种将最小平方中值算法(Least Median of Squares,LMedS)与特征值法相结合的点云平面拟合新方法。首先,通过LMedS算法进行多次迭代确定最佳阈值并剔除点云数据中的异常点。然后,采用特征值法对剔除完异常点后的点云数据进行平面拟合,以获得更加精确的拟合平面参数解。最后,分别采用最小二乘法、特征值法、RANSAC+主成分分析法与所提出方法对仿真和实测点云数据进行平面拟合计算。实验结果表明,相比于其他方法,该方法的平面拟合精度更高,适用于对含有异常点的点云数据进行平面拟合,具有较高的鲁棒性。
中圖分類號(hào): TP391
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.19358/j.issn.2096-5133.2022.03.007
引用格式: 蘇毅輝,陳志聰,吳麗君. 利用LMedS算法與特征值法的點(diǎn)云平面擬合方法[J].信息技術(shù)與網(wǎng)絡(luò)安全,2022,41(3):38-43.
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.19358/j.issn.2096-5133.2022.03.007
引用格式: 蘇毅輝,陳志聰,吳麗君. 利用LMedS算法與特征值法的點(diǎn)云平面擬合方法[J].信息技術(shù)與網(wǎng)絡(luò)安全,2022,41(3):38-43.
A point cloud plane fitting method using LMedS algorithm and eigenvalue method
Su Yihui,Chen Zhicong,Wu Lijun
(College of Physics and Information Engineering,Fuzhou University,Fuzhou 350108,China)
Abstract: In order to eliminate the negative effects on the plane fitting process caused by the outliers in 3D point cloud data,a point cloud plane fitting method combining Least Median of Squares(LMedS) algorithm with eigenvalue method was proposed.Firstly, the optimal threshold was determined by multiple iterations of the LMedS, and the outliers in the original point cloud data were removed through LMedS. Then,the eigenvalue method was used to perform plane fitting on the remaining point cloud data in order to obtain more accurate plane parameter solution.The least square method, eigenvalue method, RANSAC+principal component analysis method and the proposed method were used to fit the simulated and measured point cloud data.The experimental results show that the plane fitting accuracy of the proposed method is higher compared with other methods,this method is suitable for fitting the point cloud data with outliers, which has higher robustness.
Key words : point cloud data;outliers;LMedS algorithm;eigenvalue method;plane fitting
0 引言
點(diǎn)云數(shù)據(jù)作為一種能夠完整表達(dá)三維場(chǎng)景信息的重要數(shù)據(jù),在計(jì)算機(jī)視覺(jué)、三維重建、自動(dòng)駕駛等許多領(lǐng)域有廣泛的應(yīng)用[1]。近年來(lái),隨著三維激光掃描技術(shù)的快速發(fā)展,點(diǎn)云數(shù)據(jù)處理現(xiàn)已成為一個(gè)熱門研究話題[2]。點(diǎn)云平面擬合是一種通過(guò)建立三維平面模型來(lái)和點(diǎn)云數(shù)據(jù)進(jìn)行匹配,使模型和點(diǎn)云數(shù)據(jù)高度吻合并得到最佳模型參數(shù)的數(shù)據(jù)處理方法。三維場(chǎng)景通常是由大量平面組成,比如道路、橋梁、建筑物等都含有平面特征。將三維場(chǎng)景的點(diǎn)云數(shù)據(jù)擬合成平面,再經(jīng)過(guò)點(diǎn)云配準(zhǔn)、去噪、簡(jiǎn)化后可精確地重建出場(chǎng)景的三維模型,因此點(diǎn)云平面擬合對(duì)于三維建模具有極高的研究和應(yīng)用價(jià)值[3-5]。
本文詳細(xì)內(nèi)容請(qǐng)下載:http://www.ihrv.cn/resource/share/2000004024
作者信息:
蘇毅輝,陳志聰,吳麗君
(福州大學(xué) 物理與信息工程學(xué)院,福建 福州350108)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
