《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 测试测量 > 设计应用 > 基于三维人脸数据增强的深度伪造检测方法
基于三维人脸数据增强的深度伪造检测方法
网络安全与数据治理 9期
王昊冉,杨敏敏,王泽源,白亮,于天元,郭延明
(1.国防科技大学系统工程学院,湖南长沙410073; 2.佳木斯大学信息电子技术学院,黑龙江佳木斯156100)
摘要: 随着深度伪造技术的发展,深度伪造视频的制作及传播变得越来越容易,给社会带来了巨大的安全风险,深度伪造检测算法成为当前网络安全领域的重要方向。聚焦于提出一种泛化性能更好、效率更高、可解释性更强的深度伪造检测算法,主要针对DFDC、FaceForensic++及CelebDF三个深度伪造视频数据集进行实验并以这三个数据集集中训练出检测模型,首先使用人脸检测算法MTCNN提取人脸图像,进而将EfficientNet网络与Transformer架构相结合作为检测模型,通过采用三维人脸数据增强、注意力机制以及全局局部融合方法对模型进行训练和测试。模型在未使用型集成、知识蒸馏等方法的基础上,达到了与最优检测效果相当的检测水平。
中圖分類號(hào):KN 90
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.19358/j.issn.2097-1788.2023.09.003
引用格式:王昊冉,楊敏敏,王澤源,等.基于三維人臉數(shù)據(jù)增強(qiáng)的深度偽造檢測(cè)方法[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2023,42(9):11-20.
Deepfake detection based on 3D face data augmentation
Wang Haoran1, Yang Minmin2,Wang Zeyuan1,Bai Liang1,Yu Tianyuan1,Guo Yanming1
(1.College of System Engineering, National University of Defence Technology, Changsha 410073, China; 2.School of Information and Electonics Technology, Jiamusi University,Jiamusi 156100, China)
Abstract: With the development of deepfake technology, the production and dissemination of deepfake videos have become increasingly easy, posing significant security risks to society. Therefore, researching deepfake detection algorithms has become an important direction in the field of network security. This paper focuses on proposing a deepfake detection algorithm with better generalization performance, higher efficiency, and stronger interpretability. Experiments are conducted on three deepfake video datasets: DFDC, FaceForensic++, and CelebDF. Firstly, the Multitask Cascaded Convolutional Networks (MTCNN) face detection algorithm is used to extract facial images. Then, the EfficientNet network is combined with the Transformer architecture as the detection model. The model is trained and tested using data augmentation, attention mechanisms, and globallocal fusion methods. Without employing complex model ensembles or knowledge distillation, our model achieves comparable detection performance to stateoftheart methods.
Key words : deep forgery detects;attention-mechanism; data augmentation; neural networks

0    引言

隨著深度學(xué)習(xí)技術(shù)特別是對(duì)抗生成網(wǎng)絡(luò)(GAN)技術(shù)的不斷發(fā)展以及互聯(lián)網(wǎng)及個(gè)人計(jì)算機(jī)的普及,偽造視頻的濫用也在隨之增長(zhǎng)[1]。大量包含虛假政治人物信息的深度偽造視頻在社交媒體上傳播引發(fā)廣泛關(guān)注[2]。準(zhǔn)確鑒別深度偽造視頻,防止其產(chǎn)生惡劣社會(huì)影響成為輿論安全領(lǐng)域一個(gè)重要的課題,鑒于此,國(guó)內(nèi)外均采取一定的措施。2017年,《新一代人工智能發(fā)展規(guī)劃》經(jīng)國(guó)務(wù)院頒布,該規(guī)劃繪制了我國(guó)人工智能發(fā)展的宏偉藍(lán)圖[3]。2018年,美國(guó)國(guó)會(huì)官方定義了“深度偽造”概念,并于當(dāng)月通過了《禁止惡意深度偽造法令》[4]。2019年,美國(guó)國(guó)際戰(zhàn)略研究中心(CSIS)針對(duì)深度偽造技術(shù)政策發(fā)布簡(jiǎn)報(bào)。2020年,美國(guó)國(guó)防高級(jí)研究計(jì)劃局(DARPA)為“欺騙逆向工程”項(xiàng)目發(fā)布了一份招標(biāo)文件,該項(xiàng)目旨在對(duì)信息欺騙攻擊的工具鏈進(jìn)行逆向工程。



本文詳細(xì)內(nèi)容請(qǐng)下載:http://www.ihrv.cn/resource/share/2000005655




作者信息:

王昊冉1,楊敏敏2,王澤源1,白亮1,于天元1,郭延明1

(1.國(guó)防科技大學(xué)系統(tǒng)工程學(xué)院,湖南長(zhǎng)沙410073;2.佳木斯大學(xué)信息電子技術(shù)學(xué)院,黑龍江佳木斯156100)


微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容