《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 人工智能 > 设计应用 > 基于深度学习的电厂跑冒滴漏视频识别应用研究
基于深度学习的电厂跑冒滴漏视频识别应用研究
电子技术应用
张原1,司源2
1.国能信控技术股份有限公司;2.中国电子信息产业集团有限公司
摘要: 为解决火电厂设备在运行过程中会存在“跑冒滴漏”现象,通过视觉识别技术及深度学习的应用,提出基于卷积神经网络模型的电厂跑冒滴漏视频识别模型,并对模型进行优化和改进。该方法基于火电厂摄像头进行现场图像的采集,进行数据预处理和优化,同时按照缺陷形态建立对应数据集。然后,通过语义分割、数据增强、注意力机制、更改激活函数等技术与卷积神经网络结合,对YOLOv5算法进行深层次优化,包括训练策略的改进和模型评价调整,增强了模型算法对复杂场景识别理解能力,可有效提高视频识别精度与速度,有助于提高火电厂巡检的自动化、智能化水平,具有较好的工程应用前景。
中圖分類號(hào):TP29 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.245845
中文引用格式: 張?jiān)?,司? 基于深度學(xué)習(xí)的電廠跑冒滴漏視頻識(shí)別應(yīng)用研究[J]. 電子技術(shù)應(yīng)用,2025,51(2):21-28.
英文引用格式: Zhang Yuan,Si Yuan. Research on the application of deep learning based video recognition for power plant leakage and dripping[J]. Application of Electronic Technique,2025,51(2):21-28.
Research on the application of deep learning based video recognition for power plant leakage and dripping
Zhang Yuan1,Si Yuan2
1.CHN Energy I&C Interconnection Technology Co., Ltd.; 2.China Electronics Corporation Limited
Abstract: To solve the problem of “leakage and dripping” during the operation of thermal power plant equipment, a video recognition model for power plant leakage based on convolutional neural network model is proposed through the application of visual recognition technology and deep learning, and the model is optimized and improved. Cameras in thermal power plants are utilized to collect on-site images, then data preprocessing and optimization is performed, and corresponding datasets are established based on defect morphology. Then, by combining semantic segmentation, data augmentation, attention mechanisms, and changing activation functions with convolutional neural networks, the YOLOv5 algorithm is deeply optimized, including improvements in training strategies and model evaluation adjustments. This enhances the model algorithm’s ability to recognize and understand complex scenes, effectively improving video recognition accuracy and speed, and helping to improve the automation and intelligence level of thermal power plant inspections. It has good engineering application prospects.
Key words : deep learning;power plant;leakage and dripping;video recognition

引言

電廠運(yùn)行現(xiàn)場(chǎng)存在多種管道和設(shè)備,其中存在煤炭的輸送和燃燒、熱能的轉(zhuǎn)換、機(jī)械能的產(chǎn)生以及電能的生成等環(huán)節(jié),這些環(huán)節(jié)的安全運(yùn)行對(duì)于火電廠整體安全和效率至關(guān)重要。而電廠的“跑冒滴漏”現(xiàn)象就存在于這些重要的管道和設(shè)備上,為保證設(shè)備安全穩(wěn)定,目前電廠通常采用巡點(diǎn)檢形式進(jìn)行設(shè)備的定期檢查來(lái)消除這些隱患。但漏氣、漏液等微小隱患往往不易察覺,增大了安全運(yùn)行風(fēng)險(xiǎn)[1]。

近年來(lái),深度學(xué)習(xí)、計(jì)算機(jī)視覺技術(shù)已在電力自動(dòng)化、故障診斷、安防管控等各細(xì)分領(lǐng)域逐步開始應(yīng)用[2]。其中針對(duì)于火電廠現(xiàn)場(chǎng)“跑冒滴漏”現(xiàn)象的自學(xué)習(xí)與自診斷也有了深入的研究??焖倩趨^(qū)域的卷積神經(jīng)網(wǎng)絡(luò)(Faster Region-based Convolutional Network,F(xiàn)aster R-CNN)、基于區(qū)域的全卷積網(wǎng)絡(luò)(Region-based Fully Convolutional Network,R-FCN)、單次多邊框檢測(cè)(Single Shot MultiBox Detector,SSD)、YOLO(You Only Look Once)等算法與傳統(tǒng)目標(biāo)識(shí)別算法相比[3],具有從大量圖像數(shù)據(jù)中自動(dòng)學(xué)習(xí)目標(biāo)特征、不用設(shè)計(jì)特征提取器等優(yōu)勢(shì),這種基于深度卷積神經(jīng)網(wǎng)絡(luò)的目標(biāo)識(shí)別算法有效地簡(jiǎn)化了算法流程,提升了目標(biāo)識(shí)別的效率、準(zhǔn)確率以及泛化能力[4]。

目前已有電廠開展了多種無(wú)人檢測(cè)研究,實(shí)現(xiàn)了設(shè)備跑冒滴漏現(xiàn)象識(shí)別并及時(shí)向運(yùn)行人員發(fā)送警報(bào)。攝像頭監(jiān)控、視頻圖像識(shí)別、機(jī)器人巡檢、無(wú)人機(jī)巡檢、紅外測(cè)溫等技術(shù)手段的應(yīng)用,極大地減輕了現(xiàn)場(chǎng)巡檢人員工作[5]。但這些研究往往基于原有的算法和數(shù)據(jù)庫(kù),對(duì)于現(xiàn)場(chǎng)環(huán)境復(fù)雜、泄漏情況多樣的現(xiàn)象識(shí)別率不高,會(huì)出現(xiàn)漏檢或錯(cuò)檢情況,給電廠安全運(yùn)行帶來(lái)了隱患。

本文通過(guò)視覺識(shí)別技術(shù)及深度學(xué)習(xí)的應(yīng)用,針對(duì)火電廠運(yùn)行現(xiàn)場(chǎng)漏油、漏水、漏灰、漏煤、漏粉、漏氣、漏煙等情況[6],提出一種基于深度學(xué)習(xí)的視頻實(shí)時(shí)異常檢測(cè)方法。該方法采用目標(biāo)檢測(cè)性能較為成熟的YOLOv5為網(wǎng)絡(luò)結(jié)構(gòu)基礎(chǔ)[7],構(gòu)建電廠設(shè)備跑冒滴漏數(shù)據(jù)集,對(duì)原始算法進(jìn)行改進(jìn),包含了引入注意力機(jī)制、激活函數(shù)的更改、模型訓(xùn)練以及建立評(píng)價(jià)。通過(guò)搭建訓(xùn)練平臺(tái)進(jìn)行迭代學(xué)習(xí),不斷構(gòu)建和修正圖像模型,并將模型存儲(chǔ)在統(tǒng)一數(shù)據(jù)平臺(tái)中,最終實(shí)現(xiàn)了檢測(cè)模型的端到端的學(xué)習(xí)策略。為了驗(yàn)證對(duì)原始算法改進(jìn)后的效果,將改進(jìn)后的模型在數(shù)據(jù)集上進(jìn)行訓(xùn)練并驗(yàn)證,通過(guò)目標(biāo)檢測(cè)和評(píng)價(jià)指標(biāo)對(duì)結(jié)果進(jìn)行分析,反饋模型應(yīng)用效果,最終完成測(cè)試驗(yàn)證。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://www.ihrv.cn/resource/share/2000006320


作者信息:

張?jiān)?,司源2

(1.國(guó)能信控技術(shù)股份有限公司,北京 100097;

2.中國(guó)電子信息產(chǎn)業(yè)集團(tuán)有限公司,廣東 深圳 518057)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。