《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > 基于CNN-BiLSTM-Attention的工業(yè)數(shù)據(jù)中心IT設(shè)備能耗預(yù)測(cè)模型研究
基于CNN-BiLSTM-Attention的工業(yè)數(shù)據(jù)中心IT設(shè)備能耗預(yù)測(cè)模型研究
電子技術(shù)應(yīng)用
宋越1,靳晟1,林櫟2,高國(guó)強(qiáng)2,郭付展2
1.新疆農(nóng)業(yè)大學(xué) 計(jì)算機(jī)與信息工程學(xué)院;2.新疆電子研究所股份有限公司
摘要: IT設(shè)備的能耗直接影響到工業(yè)數(shù)據(jù)中心的電力消耗,預(yù)測(cè)IT設(shè)備能耗對(duì)優(yōu)化能源管理和資源規(guī)劃具有重要意義。然而,由于IT能耗數(shù)據(jù)呈現(xiàn)出非線性、非平穩(wěn)的特點(diǎn),導(dǎo)致預(yù)測(cè)精度低。對(duì)此,結(jié)合卷積神經(jīng)網(wǎng)絡(luò)CNN、雙向長(zhǎng)短期記憶網(wǎng)絡(luò)BiLSTM和注意力機(jī)制的優(yōu)勢(shì),分別對(duì)IT設(shè)備能耗的局部特征、數(shù)據(jù)中深層次的關(guān)鍵信息進(jìn)行提取,并根據(jù)自測(cè)IT設(shè)備能耗數(shù)據(jù)集構(gòu)建基于CNN-BiLSTM-Attention的能耗預(yù)測(cè)模型,該模型的R2、MAE和RMSE分別為0.905 3、0.050 4、0.067 3,相較于現(xiàn)有的LSTM、BiLSTM和CNN-BiLSTM模型均有不同程度的提高,說(shuō)明該模型可以應(yīng)用于工業(yè)數(shù)據(jù)中心內(nèi)IT設(shè)備能耗的準(zhǔn)確預(yù)測(cè)。
中圖分類號(hào):TP391 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.246045
中文引用格式: 宋越,靳晟,林櫟,等. 基于CNN-BiLSTM-Attention的工業(yè)數(shù)據(jù)中心IT設(shè)備能耗預(yù)測(cè)模型研究[J]. 電子技術(shù)應(yīng)用,2025,51(10):63-68.
英文引用格式: Song Yue,Jin Sheng,Lin Li,et al. Research on energy consumption prediction model of industrial data center IT equipment based on CNN-BiLSTM-Attention[J]. Application of Electronic Technique,2025,51(10):63-68.
Research on energy consumption prediction model of industrial data center IT equipment based on CNN-BiLSTM-Attention
Song Yue1,Jin Sheng1,Lin Li2,Gao Guoqiang2,Guo Fuzhan2
1.College of Computer and Information Engineering,Xinjiang Agricultural University;2.Xinjiang Institute of Electronics Co.,Ltd.
Abstract: The energy consumption of IT equipment directly affects the power consumption of industrial data centers, and predicting the energy consumption of IT equipment is of great significance for optimizing energy management and resource planning. However, due to the non-linear and non-stationary nature of IT energy consumption data, the prediction accuracy is low. In this regard, by combining the advantages of convolutional neural network (CNN), bidirectional long short-term memory network (BiLSTM), and attention mechanism, local features of IT equipment energy consumption and deep key information in the data are extracted separately. Based on the self tested IT equipment energy consumption dataset, an energy consumption prediction model based on CNN-BiLSTM-Attention is constructed. The R2, MAE, and RMSE of this model are 0.905 3, 0.050 4, and 0.067 3, respectively. Compared with existing LSTM, BiLSTM and CNN-BiLSTM models, this model has improved to varying degrees, indicating that this model can be applied to accurate prediction of IT equipment energy consumption in industrial data centers.
Key words : IT energy consumption prediction model;CNN-BiLSTM-Attention;industrial data center;deep learning

引言

數(shù)據(jù)中心是承載云計(jì)算、大數(shù)據(jù)、移動(dòng)互聯(lián)網(wǎng)和智能終端不可或缺的處理數(shù)據(jù)的設(shè)施。隨著越來(lái)越多的服務(wù)和數(shù)據(jù)“上云”,數(shù)據(jù)中心的規(guī)模在不斷擴(kuò)大、數(shù)量在不斷增長(zhǎng),因而產(chǎn)生了巨大的能源消耗[1]。隨著互聯(lián)網(wǎng)數(shù)字化進(jìn)程加速推進(jìn),預(yù)計(jì)2024年全國(guó)數(shù)據(jù)中心的耗電量將在3 400億至3 600億度之間,其產(chǎn)生的巨大能耗給經(jīng)濟(jì)和環(huán)境帶來(lái)了壓力,因此構(gòu)建綠色高效的數(shù)據(jù)中心[2]迫在眉睫。數(shù)據(jù)中心的管理者需要通過(guò)能耗預(yù)測(cè)的結(jié)果,幫助數(shù)據(jù)中心更有效地管理能源資源,降低成本和提高能耗[3]。傳統(tǒng)的數(shù)據(jù)中心能耗預(yù)測(cè)方法通常依賴經(jīng)驗(yàn)法則和歷史數(shù)據(jù),這些方法的局限性在于它們難以捕捉到影響能耗的各種復(fù)雜因素,如環(huán)境參數(shù)變化[4]、電壓電流以及負(fù)載情況變化。因此,這些方法難以在多重因素交互作用且不斷變化的條件下對(duì)數(shù)據(jù)中心能耗進(jìn)行高精度預(yù)測(cè)。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://www.ihrv.cn/resource/share/2000006808


作者信息:

宋越1,靳晟1,林櫟2,高國(guó)強(qiáng)2,郭付展2

(1.新疆農(nóng)業(yè)大學(xué) 計(jì)算機(jī)與信息工程學(xué)院,新疆 烏魯木齊 830052;

2.新疆電子研究所股份有限公司,新疆 烏魯木齊 830052)


subscribe.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。