《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 人工智能 > 設(shè)計(jì)應(yīng)用 > 基于無(wú)監(jiān)督機(jī)器學(xué)習(xí)的地質(zhì)斷層識(shí)別與深度估算
基于無(wú)監(jiān)督機(jī)器學(xué)習(xí)的地質(zhì)斷層識(shí)別與深度估算
電子技術(shù)應(yīng)用
劉順強(qiáng)
中化地質(zhì)礦山總局湖北地質(zhì)勘查院
摘要: 為解決Werner反卷積解在地質(zhì)構(gòu)造深度估計(jì)中結(jié)果不確定性的問題,采用無(wú)監(jiān)督機(jī)器學(xué)習(xí)K-means聚類算法對(duì)Werner解進(jìn)行優(yōu)化分析。通過(guò)構(gòu)建包含兩個(gè)巖墻體的合成磁場(chǎng)模型進(jìn)行測(cè)試,并添加隨機(jī)噪聲增加復(fù)雜性。將合成數(shù)據(jù)和實(shí)際數(shù)據(jù)的Werner解分別輸入聚類算法進(jìn)行分析,結(jié)果表明,該算法在合成模型中準(zhǔn)確識(shí)別出兩個(gè)深度分別為5 m和8 m的地質(zhì)體,在實(shí)際數(shù)據(jù)中識(shí)別出三個(gè)深度分別為536 m、635 m和530 m的地質(zhì)體,與該區(qū)域前期勘探結(jié)果相符。研究證實(shí),該算法不僅能有效確定地質(zhì)體的數(shù)量,還能準(zhǔn)確估算其深度位置,即使在存在噪聲的情況下依然表現(xiàn)穩(wěn)定。
中圖分類號(hào):P631.4 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.256258
中文引用格式: 劉順強(qiáng). 基于無(wú)監(jiān)督機(jī)器學(xué)習(xí)的地質(zhì)斷層識(shí)別與深度估算[J]. 電子技術(shù)應(yīng)用,2025,51(9):44-49.
英文引用格式: Liu Shunqiang. Geological fault identification and depth estimation based on unsupervised machine learning[J]. Application of Electronic Technique,2025,51(9):44-49.
Geological fault identification and depth estimation based on unsupervised machine learning
Liu Shunqiang
Hubei Geological Prospecting Institute of CCGMB
Abstract: To address the uncertainty of Werner deconvolution results in geological structure depth estimation, the K-means clustering algorithm in unsupervised machine learning was applied for optimized analysis of Werner solutions. A synthetic magnetic field model containing two dike-like bodies was constructed and tested, with random noise added to increase complexity. Werner solutions from both synthetic and actual data were analyzed using the clustering algorithm. The results showed that the algorithm accurately identified two geological bodies with depths of 5 m and 8 m in the synthetic model and three bodies with depths of 536 m, 635 m, and 530 m in actual data, consistent with previous exploration findings in the region. The study demonstrated that this algorithm effectively determined the number of geological bodies and accurately estimated their depths, maintaining stability even with noise.
Key words : Werner deconvolution;depth estimation;K-means clustering;geological structure;unsupervised learning

引言

隨著地球物理數(shù)據(jù)采集技術(shù)的進(jìn)步,地磁勘探在地質(zhì)深度估計(jì)和結(jié)構(gòu)識(shí)別中發(fā)揮了重要作用[1-3]。近年來(lái),人工智能和機(jī)器學(xué)習(xí)技術(shù)的快速發(fā)展,使得這些方法在地質(zhì)數(shù)據(jù)解譯中應(yīng)用日益廣泛[4-8]。例如,Sun等[9]提出的AI模型能有效處理大規(guī)模地質(zhì)數(shù)據(jù),提高地球系統(tǒng)科學(xué)的研究效率;Gobashy和Abdelazeem[10]基于元啟發(fā)式算法的研究表明,機(jī)器學(xué)習(xí)在地球物理數(shù)據(jù)的非線性問題處理中具有優(yōu)勢(shì);Reichstein等[11]通過(guò)結(jié)合深度學(xué)習(xí)與物理模型,實(shí)現(xiàn)了多維地質(zhì)數(shù)據(jù)的高精度解譯;而Guo等[12]則利用深度學(xué)習(xí)方法反演三維地質(zhì)結(jié)構(gòu),顯著提升了地磁數(shù)據(jù)的檢測(cè)精度。

然而,傳統(tǒng)的Werner反卷積方法在處理復(fù)雜地磁數(shù)據(jù)、尤其是含噪數(shù)據(jù)時(shí),難以精確識(shí)別地質(zhì)體的位置和數(shù)量。為此,本文提出一種改進(jìn)方法,將K-means聚類技術(shù)應(yīng)用于Werner反卷積生成的數(shù)據(jù)集,通過(guò)聚類分析更精確地識(shí)別地質(zhì)體的深度和分布。這一方法不僅提高了解譯精度,也克服了傳統(tǒng)方法在復(fù)雜地質(zhì)結(jié)構(gòu)處理中的局限性。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://www.ihrv.cn/resource/share/2000006686


作者信息:

劉順強(qiáng)

(中化地質(zhì)礦山總局湖北地質(zhì)勘查院,湖北 武漢 430070)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。